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Abstract
Methods for automatic identification of fuzzy models for the purposes of real-
time industrial process monitoring are studied and tested. Theoretical fuzzy
and neurofuzzy approaches to identification of Mamdani and Takagi-Sugeno
inference models are summarized. Support of fuzzy inference in the active
database system RapidBase is discussed. Commercial products Matlab and
fuzzyTech are tested in a case study of predicting abnormal states in a waste
water treatment plant. The most challenging part of the modeling turns out to
be the structural identification, that is the derivation of the rule format and the
selected variables. Best results are produced, in Matlab, by using neurofuzzy
learning (ANFIS) together with the sequential forward search and, in
fuzzyTech, with the learning of degree of rule support. Applicability of the
studied methods to automatic extraction of RapidBase fuzzy monitoring
models from measurement data is discussed.
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1 Introduction

After Mamdani [Man74] first introduced a fuzzy logic based controller, giving life to
fuzzy inference, the technology has been spreading ever since. The reasoning model
based on Zadeh's fuzzy IF THEN rules found its way into various automatic control
applications. The Mamdani's model yielded well to traditional knowledge acquisition
from human specialists. The rules were intuitive and understandable in common terms.
Later, Takagi and Sugeno [ST83] introduced another model that was better suited for
automatic model construction. In recent years, the area of fuzzy inference systems (FIS)
and the methodologies of FIS model construction (called also model identification or
learning) has been subject of intensive research. In addition to control systems, FIS solu-
tions have been applied to other tasks requiring computational intelligence, like real-time
monitoring of industrial processes. For this purpose, we have developed an active data-
base system called RapidBase [WKLP00] equipped with fuzzy triggers [WB98]. In our
efforts to apply RapidBase to real-life problems, we noticed that FIS models of large pro-
cesses become large and incomprehensible. The need for efficient and reliable model con-
struction methods has become more and more acute.

In this report, we concentrate on methods for extraction of multivariable FIS models from
observation data, for the purposes of real-time process monitoring. The task of the FIS
model is to detect, in real-time, abnormal process states, especially such that may be pro-
jected to a malfunction in a future, and require a corrective action on the part of a human
operator. A case study is also described where a model predicting states of waste water
treatment process is being constructed with commercial fuzzy tools.

We survey the basic FIS models, the RapidBase implementation, and the limitations of
the model identification in Section 2. Section 3 is devoted to theoretical methods of model
identification using both fuzzy and neurofuzzy approaches. The case study is introduced
in Section 4, and various experiments are described. Applicability to RapidBase is also
discussed. The results are summarized in Section 5.

2 Fuzzy concepts and modeling methods

In this Section we address the basic fuzzy modeling methods starting with the basic con-
cepts of fuzzy logic, explaining the fuzzy inference methods, introducing the fuzzy meth-
ods implemented in RapidBase and finally, addressing what can be learned from example
data.

2.1 Basic concepts

The concept of fuzzy logic was introduced by Lotfi Zadeh in early 60's [Zad65]. The
fuzzy logic is based on the fuzzy set theory and especially on the concept of a fuzzy set.
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Informally, a fuzzy set is a set with imprecise boundaries in which the transition from
membership to non-membership is gradual rather than abrupt. A fuzzy set F in a universe
of discourse U is characterized by a membership function µF, which associates each ele-
ment u ∈ U with a grade of membership µF(u) ∈ [0, 1] in the fuzzy set F. Note that a
classical set A in U is a special case of a fuzzy set with all membership values µA(u) ∈ {0,
1}.

A fuzzy type T is a mapping of related membership functions (also called fuzzy terms)
against a specific universe of discourse U. Let us have a look at an example of a fuzzy
type to clarify the idea.

low                    normal    hot

0.33

1

   80     90     100    110    120    130    140

Figure 2-1.  The fuzzy type Temperature.

The fuzzy type Temperature is defined in the figure above. Its term set T(Temperature) is
{low, normal, hot}. We interpret “low” as “a temperature below about 110°C,” “normal”
as “a temperature close to 110°C,” and “hot” as “a temperature above about 110°C”.
These linguistic terms can be characterized as fuzzy sets whose membership functions are
shown in the Figure. Each element u ∈ U belongs to each fuzzy set defined with a degree
of membership µF(u) ∈[0, 1]. For example, if the temperature is 90°C then the member-
ship degree for the fuzzy subset low is equal to 0.33. At the same point the membership
degree for the fuzzy subset hot equals 0.

A fuzzy proposition is of the form X IS A, where X is a linguistic variable of a fuzzy type
T and A is a fuzzy set (linguistic term) defined on T. A fuzzy rule takes the form of an if-
then statement such as “if X IS A then Y IS B" where X IS A and Y IS B are fuzzy
propositions. The if part of a fuzzy if-then rule is called the antecedent (or premise),
whereas the then part is called the consequent. The antecedent part of a fuzzy rule is a
conjunction and/or a disjunction of fuzzy propositions.

A fuzzy implication is viewed as describing a fuzzy relation between the fuzzy sets form-
ing the implication [MJ94]. A fuzzy rule, such as “if X IS A then Y IS B” is implemented
by a fuzzy implication (fuzzy relation) which has a membership function µA→ B(x, y) ∈ [0,
1]. Note that µA → B(x, y) measures the degree of truth of the implication relation between
x and y. In control applications, Mamdani implication (minimum) is one of the most
commonly used interpretation for the implication, it is defined as:

µA → B(x, y)= min[µA(x), µB(y)]

A set of related fuzzy rules forms a fuzzy rule base that can be used to infer fuzzy results
in the form of fuzzy sets. A fuzzy result can be further refined to a more useful crisp
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result in the process called defuzzification. The most common mean of defuzzification is
called the center of gravity method in which the center of gravity of the fuzzy set is meas-
ured and projected to the x-axis to get the crisp result. For an example, see the figure
below.

0.5

1

ca-point

Figure 2-2.  Center of gravity (ca) defuzzification.

2.2 Inference using fuzzy logic

The most commonly used fuzzy inference method is the Max-Min inference method or
Mamdani inference method. Another popular fuzzy model structure is called the Takagi-
Sugeno model [TS85]. An overview of both the methods is given in this Section. For a
more detailed description of the models, see Section 3.1 Fuzzy model extraction methods.

2.2.1 Mamdani model

Let us consider the following rule base (where X, Y and Z are linguistic variables).

Ri: if X is Ai and Y is Bi then Z is Ci  i = 1..n

Given the input fact (x0, y0), the goal is to determine the output “Z is C”. The first step to
make is to fuzzify the given input. The fuzzifier maps the input data x0 ∈ Ux into the
fuzzy set A* and y0 ∈ Uy into the fuzzy set B*.

The next step is to evaluate the truth value for the premise of each rule, and then apply the
result to the conclusion part of each rule using the fuzzy implication. The membership
functions defined on the input variables are applied to their actual values to determine the
degree of truth for each rule premise. The degree of truth for a rule’s premise is computed
in our example rule base as follows:

αi = µAi and Bi(x0, y0) = min(µAi(x0) , µBi(y0))

If a rule’s premise has nonzero degree of truth then the rule is activated. The next step is
to find the output, C’i, of each of the rules:

µC’i (w)= µ(Ai and Bi)→Ci(x0, y0, w), ∀ w ∈ W

In Min inferencing (or Mamdani implication rule) the implication is interpreted as a fuzzy
And operator:

µC’i (w)= µ(Ai and Bi)→Ci(x0, y0, w), ∀ w ∈ W
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= µAi and Bi(x0, y0) and µCi(w) = min(µAi and Bi(x0, y0), µCi(w))

In the rule aggregation step, all fuzzy subsets assigned to each output variable are com-
bined together to form a single fuzzy subset for each output variable. The purpose is to
aggregate all individual rule outputs to obtain the overall system output. In the Max com-
position, the combined output fuzzy subset C* is constructed by taking the maximum
over all of the fuzzy subsets assigned to the output variable by the inference rule:

µC*(w)= max(µC’1(w), µC’2(w),.... , µC’n (w))

Normally, the defuzzification step is executed as the last step and the most commonly
used method is the center of gravity described earlier.

2.2.2 Takagi-Sugeno model

The Takagi-Sugeno fuzzy model differs from the Mamdani model by introducing crisp
functions as the consequences of the rules. This structure offers a systematic approach to
generate fuzzy rules from a given input-output data set. A Takagi-Sugeno rule set is of the
form:

Ri: if X is Ai and Y is Bi then zi = fi (x0, y0), i = 1..n, (x0, y0) is the input

The antecedent of each rule is a set of fuzzy propositions connected with the AND
operator. The consequent of each rule is a crisp function of the input vector [x0, y0]. By
means of the fuzzy sets of the antecedent propositions the input domain is softly parti-
tioned in smaller regions where the mapping is locally approximated by the crisp func-
tions fi.

Combining the rules and their effects differ from the Mamdani method considerably. One
variation of the Takagi-Sugeno inference system uses the weighted mean criterion to
combine all the local representations in a global approximator, like this:

 
∑

∑ ==
i

r

i
iiz

z
µ
µ

1

where µi is the degree of fulfillment of the ith rule and r is the number of rules in the rule
base.

2.3 RapidBase fuzzy methods

The fuzzy inference engine in RapidBase is tightly connected to the trigger system of the
RapidBase Server. A fuzzy trigger, when fired, starts the fuzzy reasoning process that is
executed by the inference engine. RapidBase implements the Mamdani method to infer
the fuzzy results. For the membership function type the triangular and trapezoidal func-
tion types can be used. The number of fuzzy propositions in an antecedent of a rule is not
limited. Only one proposition is accepted as a consequent of a rule. Center of gravity is
used to defuzzify the fuzzy result when a crisp result is needed.

In addition to basic Mamdani method, the following features are added: Degree of Sup-
port (DoS) of each rule in a rule set, AND and OR operators between antecedent fuzzy
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propositions and negation of a fuzzy proposition. An example of a RapidBase fuzzy rule
follows.

(0.8) IF motor IS hot AND torque IS NOT high THEN alarm IS high

Also, fuzzy quantifiers and finally fuzzy temporal restrictors, addressed in sequel, are
implemented in RapidBase.

2.3.1 Fuzzy quantifiers

Classical logical systems use two quantifiers: universal and existential. Fuzzy logic
admits a wide variety of fuzzy quantifiers exemplified by few, several, about ten, etc. A
quantified fuzzy proposition is of the form Q X's ARE A, where Q is a fuzzy quantifier, X
is a set of objects and A is a fuzzy set. A fuzzy quantifier is defined with a membership
function. For example, the following membership function could be defined for the fuzzy
quantifier most.

10060

most1

Figure 2-3.  The fuzzy quantifier 'most'.

For the calculus used to evaluate quantified propositions in RapidBase, please refer to
[PW00].

2.3.2 Fuzzy temporal restrictors

A fuzzy temporal restrictor is an entity that restricts a fuzzy proposition temporally. A
temporally restricted fuzzy proposition can be written as “A HAS BEEN B T” which
means A is satisfying the fuzzy predicate B, taking into account the temporal restrictor T.

A temporal restrictor is defined with a membership function. The following membership
function defines the temporal restrictor few_minutes_ago.
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T im e / m in
(p ast)

M em bersh ip d eg ree

1

246

few _m inu tes_ago

now

Figure 2-4.  The membership function of a temporal restrictor.

The origin in the definition describes the dynamic concept now that means the current
instance of time. The membership function few_minutes_ago is defined to have a positive
membership degree between “six minutes ago” and “two minutes ago”. Current time is
changing all the time, so, in fact, the membership function definition is also constantly
changing. Using the temporal restrictor we can define, for example, the following propo-
sition:

IF motors WERE HOT few_minutes_ago THEN "issue medium alarm"

For the calculus used to evaluate temporally restricted propositions in RapidBase, please
refer to [PW00].

2.4 Using example data to build fuzzy inference models

Fuzzy models should be built using expert prior knowledge when available. Learning
from example data may be used for tuning an existing fuzzy inference system and also for
automated model extraction from the data. Bonissone [BCGK99] provides a good survey
of building fuzzy inference models combining different methods from classical control
theory and soft computing and combining expert knowledge with data based tuning. Also
Babuska [BVH99] describes interesting methods for fuzzy modeling also involving data
based methods.

Learning from data presumes the existence of measurement data records that represent the
modeled phenomena adequately. There has to be enough data describing the system while
it is at a stable state. The measurements should describe the same phenomena.

There are different types of learning schemes available depending on the type of data that
is available. In supervised learning, there exists a clear output (possibly provided by a
reliable teacher) for each input data vector and the task is to learn an adequate input-out-
put mapping from the data. Reinforcement learning may be applied in cases where the
feedback is given occasionally, may be delayed and is only partially targeted. Unsuper-
vised learning is used when there is no feedback available and the aim is to find internal
structure within the input space. Typically clustering is used to form clusters of measure-
ments where the similarity between vectors within a cluster is as close as possible and
vectors from different clusters are as dissimilar as possible.

Typically the current automated learning algorithms require that all the knowledge from
the system has been represented as input feature vectors with the same amount of features
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(all data needs to be on the same vector format). Possible missing values need to be pre-
processed appropriately and the studied phenomena has to be represented in the vector
format by calculating appropriate features describing the raw data.

Automated learning algorithms exist supporting many different types of model classes:
neural networks (eg. MLP, RBF, SOM), decision trees, association rules, episode rules,
logic programs and Bayesian belief networks. Fuzzy inference systems (FIS) may be
viewed as a particular model class and also some of the more traditional model types may
be fuzzified (fuzzy decision trees, fuzzy clustering and fuzzy SOM). Learning may be
divided into structural learning (system identification in classical system theory) and
parameter learning (parameter estimation in classical system theory). Structure deter-
mines the flexibility of the model in the approximation of the mappings. There is a trade-
off with good generalization ability and model complexity. More complex models may be
fitted well to the training data but they tend to perform much worse on unseen validation
data indicating low generalization capability. One should aim at building models with a
suitable complexity.

In fuzzy model extraction, structural learning may involve the selection of the most
informative inputs to use (called variable selection) and selection of the order of the sys-
tem (number of input and output lags). Also the selection of the model type may be
involved (Takagi-Sugeno or Mamdani inference model), as well as the identification of
the number of rules to use in the mapping. This has to do with fixing the granularity of
the fuzzy partition of the input space (selecting the number and type of membership func-
tions).

In fuzzy model extraction, parameter learning involves the tuning of the membership
function parameters for the inputs and the consequents. Also the other structural parame-
ters could be tuned. Parameters that are linearly related to the output may be optimally
estimated by least-squares methods (LSE). One has to use non-linear optimization meth-
ods (like neural networks) for estimating non-linear mappings. [BVH99]

3 Model extraction approaches

3.1 Fuzzy model extraction methods

Fuzzy models have excellent capabilities to describe a given system. Many studies
regarding fuzzy modeling have been reported [YF94]. Some of them are based on pattern-
recognition [SY93, W94] and some others are based on system programming theory
[TS85]. One of the most outstanding models among them is the model suggested by
Takagi and Sugeno in 1985 [TS85]. However, this identification algorithm is too complex
and difficult to implement. Lately, to solve this problem, Sugeno and Yasukawa proposed
a new model based on pattern recognition techniques [SY93].

3.1.1 Takagi and Sugeno's Fuzzy Model

The fuzzy model suggested by Takagi and Sugeno [TS85] represents a mathematical tool,
which is used to build a fuzzy model of a system. A fuzzy model of a non-linear system
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consists of a set of implication rules, which are used to express control statements. An
implication rule contains fuzzy variables with unimodal membership functions1. Since
such membership functions are linguistically understandable, the fuzzy variables are also
called linguistic variables. Takagi and Sugeno's fuzzy model approximates a nonlinear
system with a combination of several linear systems by decomposing the input space into
several subspaces and representing the input/output relationship, in each subspace, with a
linear equation.

Let us assume a Multi- Input Single-Output (MISO) system with m inputs (x1, x2, ..., xm)
and a single output y. In principle, the fuzzy model of such a system consists of a rule
base with n fuzzy implication rules. The i-th rule Ri (i=1,2, ..., n) has the following gen-
eral form:

Ri: if f(x1 is Ai
1,  x2 is Ai

2,  ...,  xm is Ai
m)  then yi = gi(x1, x2, ..., xm)

Where,

yi Inferred variable of the consequence of the i-th rule. The final output y of the sys-
tem is a combination (a weighted average) of all yi (i=1,2, ..., n)

xk The k-th fuzzy variable of the premise (k=1,2, ..., m)

Ak The k-th fuzzy set whose membership function is a fuzzy subspace (k=1,2, ..., m)

f Connective function that joins the propositions in the premise.

gi Function that implies yi when the x1, x2, ..., xm  satisfies the promise.

If f is the "and" connective function and gi
  is a linear function of the form ai

0+ ai
1 x1+...+

ai
m xm the i-th fuzzy implication rule becomes

Ri: if x1 is Ai
1 and  x2 is Ai

2 and  ... and  xm is Ai
m  then yi = ai

0+ ai
1 x1+...+ ai

m xm

The truth-value of the conjunction between propositions in the premise is estimated by the
minimum of their membership values. That is, the truth value of (x is A and y is B) is
estimated as min(A(x), B(y)), where A(x) and B(y) are the membership values.

Let y be the final output of the system and wi be the truth value of y=yi, then

wi = (truth value of the premise) and (truth value of the rule Ri).

Assuming that the truth-value of Ri is 1, then wi is given by∗

( ) ( ) ( )( ) ( )∏
=

===
m

k
kk

i
mm

iii
m

i
m

iii xAxAxAxAAxAxAxw
1

22112211 ,,,min  is  and    and  is  and  is ll

                                                     
1 A membership function f is unimodal in [a, b] if there exist t∈[a, b] such that, f(x)≤ f(y) for all
x≤y≤t and f(x) ≥ f(y) for all t≤x≤y. That is, f is monotonic in [a,t] and [t,b] with f(t) being the
maximum value in [a,b]. Triangular, trapezoidal or bell typed membership functions are unimodal.

∗ The symbol ∏
=

m

i
ia

1

is used, in this context, to represent the min(a1, a2, ..., am).
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The truth value wi is used as a weight to the consequence variable yi to estimate the output
y. That is

∑

∑

=

== n

i

i

n

i

ii

w

yw
y

1

1

The final output y is inferred from the n implication rules as the average of all yi with the
weights wi.

The problem of system identification (extraction of fuzzy rules of the form Ri) requires
the determination of the following items:

1. Identification of the premise variables (i.e. x1, x2, ..., xm)

2. Identification of the membership functions of the fuzzy sets in the premise of each
rule (i.e. Ai

1, Ai
2, ..., Ai

m, for i=1,2, ..., n). This is called premise parameter identifica-
tion.

3. Identification of the parameters in the consequence of each rule. (i.e. ai
0, ai

1 ,..., ai
m

for i=1,2, ..., n).

Items 1 and 2 are related to the partition of the space of the input variables into some
fuzzy subspaces, while item 3 describes the input-output relation in each subspace.

The identification of the fuzzy model is carried out iteratively as follows:

Assume some input variables and some initial premise parameters. Consequent parame-
ters are optimally adjusted with the respect to the premise parameters and then the prem-
ise parameters are readjusted. This is accomplished by a complex algorithm, which is
based on a non-linear optimization method. However, the implementation of this method
seems to be difficult as pointed out by Wang and Langari [WL95], since it involves a
non-linear optimization method.

The optimization of the fuzzy model is achieved by using a set of sample data
(input/output examples). Let D and Y be the matrices containing r such input and output
samples respectively. The j-th column of D yields the output yj (i.e. x1j, x2j, ..., xmj → yj).


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xxxx
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3.1.1.1 Consequence parameter identification

Let us assume that we have n implication rules Ri (i=1,2, ..., n) of the form:
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Ri: if x1 is Ai
1 and  x2 is Ai

2 and  ... and  xm is Ai
m  then yi = ai

0+ ai
1 x1+...+ ai

m xm

Given the matrices D and Y, the problem of consequence parameter identification con-
cerns itself with the determination of the following parameter vector:

[ ]Tm
n

m
nn aaaaaaP ����

1
11

1
00

1=

Applying the j-th sample on the i-th rule Ri, we get the following

Ri|j : if x1j is Ai
1j and  x2j is Ai

2j and  ... and  xmj is Ai
mj  then yi

j= ai
0+ ai

1 x1j+...+ ai
m xmj

where i=1,2, ..., n and j=1,2, ..., r

The weight of yi
j is then given by

( ) ( ) ( )( )mjmj
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and the final output yj is given by
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Consequently, yj may be expressed as
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Therefore, the vector Y may be expressed as
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By reforming the matrices, Y may be written as
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X is an r×n(m+1) matrix, Y is an r vector and P is an n(m+1) vector. Therefore, the
parameter vector P is calculated by
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The parameter vector P is recursively estimated by a  stable-state Kalman filter by the
following equations:
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With initial values P0=0 and S0 =a I, where a is a big number and I is the identity matrix.
S is an n(m+1)× n(m+1) matrix, Xj is the j-th row in matrix X and yj  is the j-th element of
Y.

3.1.1.2 Premise Parameters Identification

The premise parameter identification is concerned with the determination of the member-
ship functions of the fuzzy sets in the premises. This is done by dividing the input space
of each premise variable into fuzzy subspaces, provided that the premise variables are
chosen.

The  problem of finding the optimum premise parameters minimizing the performance
index is reduced to a non-linear programming problem. For this purpose, the complex
method is used. Each fuzzy set is represented by two numbers; one that gives the greatest
grade 1, and the other that gives the least grade 0, since a membership function is linear.

3.1.1.3 Premise variable Identification

The proposed algorithm serves two purposes: (1) identifies the variables in the premises
and (2) divides the variable space into several divisions. The number of the divisions must
be also determined. This is a combinatorial problem.

Suppose we  have m input variables x1, x2, ..., xm and a single output y. The steps of the
algorithm are as follows:

Step 1. The range of the variable x1 is divided into two fuzzy subspaces "big1" and
"small1" . The range of the other variables is not divided and therefore these variables do
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not appear in the premise of a fuzzy rule. This means that the initial model consists of just
2 rules whose premises contain only the variable x1. These rules are

if x1 is big1 then  ...

if x1 is small1 then  ...

Until we fix the final model, the algorithm produces many intermediate models in each
stage. To keep track of these models, we name them as "model j-i", which means the i-th
model in the j-th stage. So, the above model is named as "model 1-1". Similarly, we
divide the range of all the remaining variable x2, ..., xm and we then end up with m models,
each of which is composed of two implications. Therefore the "model 1-i", where i=1,2,
..., m, is of the following form:

if xi is bigi then  ...

if xi is smalli then  ...

Step 2. For each "model j-i" the optimum premise parameters and consequence parame-
ters are found by the algorithms described in the previous sections. The optimum model
(the one with the least performance index) is chosen. This model is called the stable state
model of the j-th stage. Suppose that the stable state model of the first stage is the "model
1-k", where only the variable xk  appears in the premises.

Step 3. In this step, the premise variables of the stable state model are joined to each vari-
able xi (i=1,2, ..., m) by the "and" connective function forming, in that way, m models
whose premises consist of the premise variables of the stable state model plus the variable
xi. For example, If the "model 1-k" is the stable state model of the first stage, we will have
m joined variables of the form xk-xi (i=1,2, ..., m) in the second stage. Then, we divide
again the range of each variable xi (i=1,2, ..., m) into two parts (small, and big) and then
we form m models (in the second stage) of the form:

if xk is bigk and xi is bigi then  ...

if xk is smallk and xi is smalli then  ...

if xk is bigk and xi is smalli then  ...

if xk is smallk and xi is bigi then  ...

The above model is called "model 2-i", where i=1,2, ..., m but i≠k. In the case of i=k,
each range of the xk is subdivided further into two additional parts forming, for example,
small, medium small, medium big, big. Therefore, the implications of the "model 2-k" is
as follows:

if xk is smallk  then  ...

if xk is medium smallk  then  ...

if xk is medium bigk  then  ...

if xk is bigk  then  ...



 FUME Project  Discovery of Fuzzy Models
from Observation Data

 1.0

VTT Information Technology  Modified on  18.01.0113

At this point, we perform step 2 in order to find which of the models "models 2-i" (i=1,2,
..., m) is optimum. The optimum one is chosen for the next stage.

Step 4. We repeat step 3 until the following criteria are satisfied

• The performance index of the stable state model becomes less than a predefined
threshold.

• The number of implications of the stable state model exceed a predefined threshold.

In general each stage yields m models and only one (the optimum) is selected for the next
stage. Each model in the j-th stage consists of 2j implication rules. So, the predefined
threshold about the number of implications must be a power of 2.

3.1.2 Sugeno and Yasukawa Model

The fuzzy model suggested by Sugeno and Yasukawa  [SY93] consists of rules whose
consequences are represented by linguistic variables which, effectively, results in the
Mamdani model. This model is more intuitive than the one proposed in [TS85] and it is
easier to implement. The i-th implication rule  has the following form:

Ri: if x1 is Ai
1 and  x2 is Ai

2 and  ... and  xm is Ai
m  then y is Bi

where  1≤ i≤ n and xk is the k-th input variable with 1≤ k≤ m. Ai
k, Bi are fuzzy variables of

the premise and the consequence respectively. Let bi be the crisp output of y in the i-th
implication rule. Then, bi may be obtained by defuzzing Bi by taking the center of gravity
(the center of area of the consequent membership function Bi).
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Therefore, the final inferred crisp output is estimated by taking the weighted average of
the defuzzified values bi with respect to wi.
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It is often the case that we cannot build a fuzzy model over the whole input space because
we lack data. In this case, there are some areas in the input space, which are not covered
by the implication rules of the model. Consequently, there are some input data for which
wi=0 in all rules and  y cannot be inferred from the model by using the above equation. In
this case, we may infer the output y by using a gradient rule. A gradient rule may be used
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to infer the output for a given input for which no rule is available and it has the following
form:
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Where 
ix

y
∂
∂  is the partial derivative of y with respect to xi. The core area of such a rule,

with m variables in the premise, is defined as an m-dimensional Cartesian space (having a
membership function Ai

k in each dimension), which is formed by the core elements of the
fuzzy sets Ai

k (those having membership value equal to one). The core area of the i-th rule
is specified as follows: Let core(Ai

k) is the core set of the Ai
k premise parameter, then the

Cartesian product core(Ai
1) X core(Ai

2) X...X core(Ai
m) defines the core area of the rule.

For example, If Ai
k is trapezoidal and the premise consists of two variables, then the core

space of the rule is a rectangle.

A gradient rule is much like an ordinary fuzzy rule, but it has an additional part with par-
tial derivatives in the consequence. A model constructed by such rules is called a gradient
model. The rationale beside using the gradient part in the consequence is to use a combi-
nation of some local fuzzy rules that  might slightly match the input. For this purpose, the
distance between the given input and the core region of a rule is used to determine which
rules are able to contribute to reasoning. The reasoning algorithm of the gradient rules Ri

is as follows:

1. Defuzzify Bi and Ci
1, Ci

2,..., Ci
m by taking the center of gravity. This yields the crisp

values bi and ci
1, ci

2,..., ci
m.

2. Calculate the distance di between the input and the core area of the rule. di may be
defined as the Euclidean distance between the input and the point in the core area,
which is closer to the input.

3. Then, the output y is inferred by
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Where idi edw −=)( is the weight of the i-th rule depending on the distance di. The term
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    is the extrapolated value of the output using its partial derivatives
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3.1.3 Pros and Cons

Takagi and Sugeno's model can express a highly nonlinear functional relation using small
number of fuzzy rules. However, the complexity of its identification procedures made it
difficult to be used. In Sugeno and Yasukawa's model, the identification algorithm is sim-
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ple. However, because the model uses singletons as consequent parts, it requires many
fuzzy rules and its capability of system description is poor.

3.2 Neurofuzzy model extraction methods

It is generally agreed that fuzzy inference systems (FIS) provide a useful way of repre-
senting human knowledge in a fairly readable way in form of fuzzy inference rules. FIS
rules are also capable of representing inexact knowledge and to reason with such knowl-
edge in a theoretically sound way. However, the tuning of FIS proves to be challenging,
as in a nontrivial FIS there are quite a few parameters to modify (typically the member-
ship function parameters). It would be useful to be able to create or tune a FIS based on a
training data set of input values and the desired target outputs. One of the ideas has been
to apply the learning abilities available with the neural network architectures to the tuning
of FIS.

In the neural network domain supervised learning task is often solved using a feed-for-
ward layered network structure with simple processing units organized in layers. The
nodes in each of the layers are typically fully connected with those of the neighboring
layers. For each of the nodes there are typically only few adjustable parameters like the
weights from each of the neighbors and a bias weight. The network is adjusted to a set of
learning data (inputs and outputs) by feeding the inputs into the system, propagating the
evidence through the network and by calculating the difference from the desired target.
Then the parameters are adjusted by gradient descent optimization performed by a special
error back-propagation algorithm.

Jang [Jan93] has introduced the ANFIS architecture (Adaptive Network based Fuzzy
Inference System). Figure 3-1 provides an example of a simple FIS represented in an
ANFIS network. In ANFIS architecture, a FIS is described in a layered, feed-forward
network structure where some of the parameters are represented by adjustable nodes (rep-
resented as rectangular entities in the figure) and the others as fixed nodes (represented as
spherical entities in the figure). The raw inputs are fed into the layer 1 nodes that repre-
sent the membership functions. The parameters in this layer are called premise parameters
and they are adjustable. The second layer represents the T-norm operators that combine
the possible input membership grades in order to compute the firing strength of the rule.
At least in the basic ANFIS method these parameters are not adjustable. The third layer
implements a normalization function to the firing strengths producing normalized firing
strengths. The fourth layer represents the consequent parameters that are adjustable. The
fifth layer represents the aggregation of the outputs performed by weighted summation. It
is not adjustable.
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Figure 3-1. An ANFIS network structure for a simple FIS.

Jang introduces a two-pass algorithm for adjusting the parameters using a modified error-
backpropagation optimization algorithm. In the forward pass the premise parameters are
held fixed and the consequent parameters are adjusted by least squares estimation (LSE).
In the backward pass the network error is backpropagated through the network and the
premise parameters are adjusted by gradient descent while the consequent parameters are
held fixed.

The basic ANFIS method does FIS parameter adjustment to a predefined model. It may
be a hand-tuned system or automatically generated. Only the membership function
parameters are adjusted. A suitable initialization to the membership functions allocates
membership functions for the whole range and would make the boundaries overlap
somewhat so covering the whole input range.

The inputs are not automatically selected nor the general network parameters adjusted.
The variable selection may be supported by some type of searching (exhaustive in simple
cases, directed forward searching, heuristic or a genetic one). Also the network parame-
ters (like the T-norm functions to use, number of membership functions to use) could be
adjusted by a supervisory control system.

In [Jan93] multiple examples of the ANFIS were provided ranging from nonlinear regres-
sion on a few inputs to time series prediction of a chaotic time series. The results were
reported to be comparable with neural network ones. However the tests were done on
noiseless data sets which were generated by a clear functional pattern. So the operation on
noisy data was not proven.

4 Application case study

Our research problem concerns the detection of abnormalities in a process control envi-
ronment as early as possible. In this report we study the applicability of automated
knowledge discovery methods for building prediction models based on process measure-
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ment databases. Especially fuzzy model extraction methods are studied in this report. The
problem may be approached using different methods ranging from building monitoring
models capable of detecting abnormalities in the measurement data records to temporal
prediction models capable of forecasting the future behavior of quality indicator values
ahead of time. One of the main motivations is to be able to predict abnormal situations in
advance so that corrective actions can be taken in time. The prediction task is considered
more thoroughly in the case of an activated sludge waste water cleaning system.

4.1 Description of the activated sludge waste water cleaning pro-
cess

Our test case, called WasteWater, concerns two biological subprocesses of an activated
sludge waste water cleaning system being used at the Kirkniemi factory of Metsä-Serla, a
Finnish wood-processing company. Here we shall briefly describe the relevant aspects of
the process being studied.

Activated sludge waste water cleaning is a complex process consisting of mechanical,
biological and chemical subprocesses. The waste water is continuously fed to the process
and then it flows through the process for days. The considered process consists of two
partly connected cleaning lines both containing an aeration basin and a sedimentation
basin. Before entering these lines, the waste water has been mechanically cleaned, its
acidity has been neutralized and additional nutritions have been added to the system. The
cleaning is based on allowing the bacteria, protozoans and other micro-organisms to eat
organic waste as nutrition.

In the aeration basins additional oxygen is dissolved into the water so as to keep the proc-
ess aerobic, and thus to allow and accelerate the purifying bacterial consumption process.
The micro-organisms and the organic waste form a biosludge, which is extracted from the
water in the sedimentation phase. A selected part of the sedimented sludge is circulated
through the process back to the aeration basin to be reactivated in order to reach a prede-
fined sludge age (meaning the average amount of time that a particle is kept in the circu-
lation). To maintain stability of the process and good quality of the sludge, excess sludge
is periodically removed from the process and dried. Removing the sludge too soon may
produce too much waste to be dried and to be transported to a dumping place. Cycling the
waste water too long in the system consumes excess cleaning capacity.

The circulation process is slow; a typical delay between the beginning and the end of the
circulation process is 2-3 days. Furthermore, the biological aspects of the process have
longer delays, typically 10-15 days. An overview of the considered process is presented in
Figure 4-1.
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Figure 4-1.  Biological waste water cleaning process.

The process operators control the process on the basis of process measurements, such as
BOD2 and COD3 levels, and prior knowledge. In normal situations, when quantity and
quality of the incoming water is stable, control of the process is easy and well known. In
abnormal situations, for example, when chemical concentrations of the input water
change rapidly, the process can go out of balance. The biomass reacts slowly to changes
in the water quality and quantity, and therefore an out-of-balance situation in the waste
water treatment plant occurs several days after the actual cause has occurred. Further-
more, corrective actions are also slow and the results are usually observable only after
quite a long delay.

Process measurements are of two basic types: online meterings and laboratory analysis.
Online meterings are obtained using sensors and the values from online meterings are
available instantly, together with a timestamp. Sometimes online meterings may produce
erroneous indications. This is due to fouling of the sensors and drifting of sensor calibra-
tion. Typically values from online meterings are available with a time resolution of sev-
eral seconds, but in this case study averaged values of one hour are used.

Most process quality results are obtained using laboratory analysis. Analysis are per-
formed by taking a sample which is then analyzed in laboratory by chemical experts.
Results of the laboratory analysis are entered to the computer system manually with a
timestamp coding the time instance the sample was taken. Most of the laboratory analyses
are performed in-house, but some analyses are performed in external neutral laboratories.
Typically, results of in-house analyses are available within hours (by late afternoon) after
the sample period has ended, but external laboratory results can have a delay of several
weeks. The sample period may extend for several days.

                                                     
2 The biological demand for oxygen (BOD) is a measure of the amount of oxygen used by micro-
organisms to decompose the organic matter in the wastewater.
3 The chemical demand for oxygen (COD) is a measure of the amount of oxygen used to oxidize
organic matter and to convert it to carbon dioxide and water.
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4.2 Problem formulation

The problem of detecting abnormal situations may be formulated in different manners
motivating alternative approaches to the problem:

• One approach is to try to forecast the continuous-valued outputs of the time series
variables a few time steps into the future using some type of regression methods.

• Often in process environments normal behavior clearly dominates the available proc-
ess data meaning that examples of abnormal situations is much more rare. Here one
may try to model the normal behavior of the system by clustering the measurement
data records into similar prototype vectors, which then describe the typical states of
the system. Then one may monitor the distance of each new state from the closest
prototype and if the distance is above a given threshold value, an abnormal state has
been identified and more detailed analysis methods may be started. [IRV97].

• Another approach is to build a classifier assigning each of the process conditions into
typical process states based on the historical measurement records available at the
time of the classification task. This way the system could warn the user about poten-
tial problems before the quality indicators show problems. Examples of good and bad
behavior are needed for building classifiers. The state labels could be normal or
abnormal states identified based on the value of the desired quality indicators after the
prediction time interval has passed (future values). [SVAH99].

4.3 Measurement database and the preprocessing methods

Our measurement database contains daily values for 338 consecutive days. Values are
available for 17 original variables (online, laboratory and calculated ones). The time
series of these variables have been cleaned by removing clear outliers or erroneous values
and by replacing missing values using interpolation. The time series have also been
smoothed.

The temporal aspects of the data set have been captured by adding additional features to
each record. A wavelet transformation was calculated for each series and four parameters
describing the signal with different temporal detail are stored as new features (W1 – W4
prefixes in the field names). W1 has the lowest temporal detail and W4 is the most precise
in temporal sense. A different way of viewing the temporal variations is to study the dif-
ferences of values between timestamps. Three levels of differences were computed for
each variable (D1, D3 and D7 prefixes, the number specifies how many days separate the
compared timestamps). These steps added 7 * 17 new feature variables into the record.
Therefore we have 136 input fields and additionally the output fields.

Various other ways of generating meaningful temporal features are available but they
have not been tested here.
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4.4 Experiences with Matlab Fuzzy Logic Toolbox

4.4.1 Main features of the Fuzzy Logic Toolbox

The Fuzzy Logic Toolbox [Mat00] is a library of functions implementing a framework for
creating, editing and executing fuzzy inference systems. It is based on the Matlab mathe-
matical programming environment by the Mathworks company
(http://www.mathworks.com). Both graphical tools and command line scripts are avail-
able. Both fuzzy clustering and adaptive neurofuzzy techniques (based on the ANFIS
architecture) are available for generating models directly from training data. The created
systems may be distributed as standalone fuzzy engines. Matlab allows the programmer
the possibility to also integrate other toolbox functionality and advanced plotting and
graphics functionality into the user M-files. The open programming interface and the
ability to extend the tools is one of the main benefits of the Matlab environment.  For
example, it is possible to test fuzzy controllers directly in a simulator created with Mat-
lab/Simulink.

The toolbox allows one to build fuzzy inference systems using both Mamdani and
Takagi-Sugeno methods. The Mamdani method is the more intuitive and well-suited to
human input and also the more widespread method. The Sugeno method is computation-
ally more efficient and well suited to optimization and adaptive techniques and to mathe-
matical analysis. It has also guaranteed continuity of the output space. The methods are
very similar as the fuzzification of the inputs and the application of the fuzzy operator are
similar. However, in Sugeno method the output membership functions may only be con-
stant or linear. A typical first-order Sugeno Fuzzy model has rules of the form:

if x is Ai and y is Bi then z = p*x + q * y + r

Therefore the implication method and the aggregation methods are different from the
Mamdani way.

The toolbox provides three types of graphical editors: the FIS Editor for editing the main
structure of the fuzzy inference system by linking the fuzzy inputs and outputs to the sys-
tem and specifying the main parameters of the system. It seems that only simple one-layer
models may be defined and combining different rule sets is not allowed. The Membership
Function Editor is used for specifying the membership function parameters. There are 11
built-in membership functions (user may define additional ones). The rule editor is used
to link the different input combinations to the outputs. The Rule Viewer may be used to
graphically inspect the rules. The Surface Viewer is used to display the response surface
of the system.

The generated fuzzy inference systems may be stored in an open ASCII file format.

Fuzzy clustering is also supported. The purpose of clustering is to identify natural group-
ings of data from a large data set. Fuzzy c-means clustering (FCM) is a clustering method
where each data point may partially belong to more than one cluster with a degree speci-
fied by a membership function. FCM starts with an initial guess for the cluster center
locations and iteratively updates the cluster centers and the membership grades for each
data point based on minimizing a cost function. The algorithm typically converges within
a few iterations. In Figure 4-2 one can see a simple example of fuzzy clustering. There a
set of two dimensional data points has been clustered with two clusters and the cluster
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centers have been plotted as well as the data points colored based on the cluster that they
most likely belong to.

Figure 4-2.  An example of finding two clusters for a 2-dimensional data set

Subtractive clustering method is a fast, one-pass algorithm for estimating the number of
clusters. It partitions the data into clusters and generates a FIS with the minimum number
of rules required to distinguish the fuzzy qualities associated with each of the clusters.

Adaptive neurofuzzy learning may be used when one has the input/output data for the
system one wants to model. ANFIS computes such membership function parameters that
best match the given data. The generated models are limited to the Sugeno type models
(the 0th or the first order) with a single output and only predefined membership function
formats may be used. The algorithm requires an initial FIS structure specifying the num-
ber and type of membership functions. These may be created manually, by using grid
partitioning or by subtractive fuzzy clustering. Also a graphical user interface, called
ANFISEDIT, is available for using the ANFIS functionality.

4.4.2 Case test 1: Prediction of future values of a quality variable

We tested the ANFIS learning in the problem of predicting future values (3 days forward)
of quality variable LiukP3_4 based on any of the features available at the prediction time.
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The quality variable values below 0.5 are considered normal by the operator. The operator
is most interested in learning accurate predictions about abnormally high values.

The data set was augmented by adding new features to each data record representing the
lagged values of Liuk_P3 variable (3, 6, 9 and 12 days before the prediction time). This
was done to test the autocorrelation of the predicted time series.

The available data set was divided into three sets called training, testing and validation
data sets. Samples were assigned alternately to the data sets and therefore each of the data
sets were allocated about 1/3 of the samples. As the value ranges of the variables are very
different it was necessary to normalize the value ranges before performing the modeling.
Each data set was (0,1)-normalized (mean=0 and standard deviation=1) based on the
training data set. Also all the data that is used for making predictions has to be scaled
before feeding into the model. The predictions are then denormalized into the real value
ranges.

As there is not much training data (131 records) one must not build too complex models
as that leads to poor generalization capability. Also fuzzy rule sets are best suited to map-
ping few inputs to one or more outputs. Therefore a suitable model was searched for by
first using each of the available input features alone as the predicting variable in the gen-
erated FIS model and by testing each of these models on their RMS error on unseen
checking data. The models were ranked based on this check RMS error. Then either an
exhaustive search or a sequential forward search may be done. In the former all the com-
binations of two or more inputs are tested and the best one is selected based on the check
RMS error. In the latter a directed beam search is performed where one additional input is
added to the best fitting model (measured with check error). It is clear that the exhaustive
search soon becomes too complex and sequential forward search is therefore a more suit-
able alternative.

Using sequential forward search for searching two input variable models and 5 member-
ship functions per variable it turned out that W2LIUK_P3 (2nd wavelet coefficient of the
values of variable LIUK_P3) produced the lowest RMS error (about 0.78) for the check-
ing data. However, the differences between the models were not very large (see Figure
4-3). It is noticeable that all of the two variable models produced larger checking errors
than the best one variable models although their training errors were smaller (therefore
overfitting occurred).

In Figure 4-4 one sees the predictions for  the validation data set. Some of the peaks have
been anticipated but there are two sets of very large negative peaks. Possibly the negative
estimates could just be ignored but anyhow the predictions do not anticipate well the
actual values. Similar results have been found also with neural networks using the same
data.
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Figure 4-3.  Checking and training RMS errors for the 30 best one- or two-variable mod-
els using 5 membership functions per variable

Figure 4-4.  ANFIS predictions (red/dark) and the real outputs (green/light) for a valida-
tion data set based on a one input (W2LIUKP3) fuzzy model with 5 membership functions
per variable
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It was found that the time delayed features of Liuk_P3 did not produce good results sug-
gesting that there is only weak autocorrelation in this time series.

The effect of the number of membership functions (MF) per variable was tested by cre-
ating models using only three MFs per variable. It was found that with these simpler
models also two variable models faired better on the checking data (with training data the
fitting was much better). Now the VIRTA3 variable produced best models (see Figure
4-6). The differences are however small between the models. From Figure 4-7, we see
that now the large negative estimates are missing. However, many of the peaks remain
unpredicted and some false ones are suggested. From Figure 4-8 and Figure 4-9 one sees
that even with the training and checking data the produced estimates are not very good
suggesting that overfitting is not present and that the one-variable model is not enough to
predict the phenomena described in the data.

The generated rule bases contained as many rules as in the Cartesian product of the mem-
bership function amounts of each of the inputs. So as the number of inputs rises the num-
ber of rules soon becomes untractable. The number of rules depends on the number of
input variables and on the number of membership functions used per variable (see Figure
4-5 for a few examples)

#rules = (#vars) #MF

#variables #MFs #rules
2 3 8
3 3 27
4 3 64
2 5 32
3 5 243
4 5 1024

Figure 4-5.  The number of generated rules for a few cases-.
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Figure 4-6.  Checking and training RMS errors for the 30 best one- or two-variable mod-
els using 3 membership functions per variable

Figure 4-7.  ANFIS predictions (red/dark) and the real outputs (green/light) for a valida-
tion data set based on a one input (VIRTA3) fuzzy model with 3 membership functions per
variable
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Figure 4-8. ANFIS predictions (red/dark) and the real outputs (green/light) for the train-
ing data set based on a one input (VIRTA3) fuzzy model with 3 membership functions per
variable

Figure 4-9.  ANFIS predictions (red/dark) and the real outputs (green/light) for the
checking data set based on a one input (VIRTA3) fuzzy model with 3 membership func-
tions per variable
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4.4.3 Case test 2: Fuzzy clustering of the input data records

Fuzzy clustering of the measurement vectors was tested by clustering the training data
using subtractive clustering. At first a suitable number of rules was determined and then
linear least squares estimation was used to determine each rule's consequent equations. A
fuzzy rule set was then created to map the clusters to the desired outputs. In Figure 4-9 we
see that the predictions seem to anticipate the actual behavior fairly well for unseen vali-
dation data set. However, this may be due to the fact that the data sets were assigned data
for consequent days. Therefore, the data records are not completely independent. Also
one must note that the generated FIS contained 20 inputs and for each input 63 member-
ship functions (63 rules were generated, there were 112 training data records) which
means that the model is much too complex and the good results are due to data memori-
zation.

The toolbox also contains facilities to do fuzzy c-means clustering which iteratively cal-
culates the requested amount of cluster centers. The tool was tested and worked fast.
However, the quality of the clusters was not evaluated, as no easy way was available.

Figure 4-9.  Fuzzy clustering based predictions (red/dark) and the real outputs
(green/light) for the validation data set based on all basic variables (20).

4.5 Experiences with fuzzyTech

fuzzyTech by Inform GmbH is a tool for the development of fuzzy logic and neural-fuzzy
solutions. We tested it with the WasteWater case data already described in this document.
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The main problem with the evaluation of the software was a lack of comprehensive
documentation. For example, the method used for neural-fuzzy learning was not revealed
for the user.

The fuzzy models constructed in the test runs were solid and understandable. The predict-
ability of the models was not tested with RapidBase so the value of the neurofuzzy
learning module was not evaluated. For more about the fuzzyTech – RapidBase
interoperability, see Section 5 "Running generated models with RapidBase".

Based on the test period with the product a major drawback seems to be the restriction of
the rule base size to no more than 1000 rules. This limitation restricts the number of
input/output parameters of the model because of the following reason: The initial model is
formed by issuing a rule for each fuzzy term combination of each input and output vari-
able. This can be seen as a Cartesian product of all the variables and terms involved. For
example, if we have a model formed by three input variables and one output variable,
each having four linguistic terms then the size of the initial rule base is going to be 4(3+1) =
256 rules.

The rest of the Section shows how the fuzzy type and rule base modifications are handled
in fuzzyTech. In addition to manual modifications also the neurofuzzy learning module is
addressed.

4.5.1 The user interface

The user interface (UI) of fuzzyTech follows the familiar look&feel of the latest genera-
tion of MS Window 2000 and MS Office 2000 software products.

The tree view  pane enables structured access to all components of a fuzzy logic system
under design in the same way the Windows Explorer lets users browse the structure of
their PCs. The Editor and Analyzer windows allow designing each single component of a
fuzzy logic system graphically. The following Figure gives a view of the graphical UI.
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Figure 4-10.  An overview of the user interface.

The project open on the Figure above was generated from an example data stored in a text
file. The system automatically generated the input variables, their linguistic types, initial
rule base and the output variable. The definition of a linguistic type can be easily changed
in the linguistic type window (distinct for each type defined) using common mouse tech-
niques (e.g., dragging). The following Figure shows an example of a linguistic type win-
dow.

Figure 4-11.  A linguistic type.

fuzzyTech uses Mamdani type rules to form the rule base (IF fuzzy antecedent THEN
fuzzy consequent). In addition, the Degree of Support (DoS) value is introduced with
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every rule. A DoS value gives a weight for each value to be used in the rule aggregation
step of fuzzy inference. The value is between [0...1]. Effectively, the DoS value may be
used as a way for structural learning of the fuzzy model. Using the value one can limit the
size of the rule base, for example, by dropping off the rules with the DoS value less than a
specific value. A part of the rule base for our example is shown below.

Figure 4-12.  A rule base.

The neurofuzzy learning tool provides a graphical interface for the learning process
monitoring. This interface is interesting to use and gives information about the values of
the learning parameters. The drawback of this tool is the fact that it slows down the
learning process considerably. The learning process can be executed without the graphical
user interface thus speeding up the process. The learning module can learn Dos values of
the rules or the definitions of the linguistic types or both at the same time. The UI of the
tool can be seen in the following figure.
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Figure 4-13.  The learning tool.

The on-line learning progress information on the window above include error percentage
of the current rule base against the learning examples. The maximum deviation (the red
curve on the left) shows the error of the worst sample against the current rule base. Sam-
ples under the threshold are skipped within the training procedure. Training one sample
can increase the error of other samples. Therefore, the training results are automatically
performed after every complete iteration. The average deviation (the green curve on the
left) shows the average of the errors occurring during a complete iteration. The average
error is computed by adding the errors for each sample divided by the number of samples.
Also, the process status in terms of the number of iterations on the test examples and the
elapsed time are printed.

4.5.2 Under the hood

Unfortunately, the actual learning method of the fuzzy model is not known. Instead of
introducing the learning method we are restricted to explain the parameters the user can
adjust to control the process.

When the example data is fed to the system it recognizes the number of variables n and by
default suggests n-1 input variables and one output variable. It also automatically forms
the definition area for each variable and assigns default linguistic terms for each variable.
This process is interactive and the default settings can be changed by the user.

Before applying the neurofuzzy learning module the learning process parameters have to
be set up (if not, the defaults are in effect). The following are the basic user defined
parameters: Step Width (DoS) that sets the value for the learning rate used for updating
the DoS of fuzzy rules and Step Width (Term) that sets the value for the learn rate used for
updating the position of terms of linguistic variables.

The stop conditions for the learning process are set by the user. One of the following can
be selected: Max Steps that stops the training after a fixed number of iterations. The Avg
Deviation criteria is fulfilled if the average of the errors occurring during a complete
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iteration is less than an error threshold. The average error is computed by adding the
errors for each sample divided by the number of samples. The Max Deviation criteria
compares the error of the worst sample with an error threshold. Samples under the thresh-
old are skipped within the training procedure.

The user has to select also the learning method. It can be either RealMethod, Random-
Method, Batch_Learn or Batch_Random.

• RealMethod uses a single selected sample to find the best terms and rules to be
changed. The changes to membership functions and fuzzy rules are computed by
using the constant StepWidth(Term) to change terms, and the constant Step-
Width(DoS) to change rules.

• RandomMethod is like RealMethod but only using random steps from the equipar-
tioned interval [0…StepWidth(LingVar)] to change terms, and random steps from the
equipartioned interval [0…StepWidth(DoS)] to change rules.

• Batch_Learn computes a batch in which all samples are used to find the best terms
and rules to be changed. The changes to membership functions and fuzzy rules are
computed by using the constant StepWidth(Term) to change terms, and the constant
StepWidth(DoS) to change rules.

• Batch_Random is like Batch_Learn but only using random steps from the equipar-
tioned interval [0…StepWidth(LV)] to change terms, and random steps from the
equipartioned interval [0…StepWidth(DoS)] to change rules.

The neurofuzzy training is based on sample data. The training success depends on the
order in which the samples are selected. The user selects the selection mode that deter-
mines whether samples are used sequentially from a file or if they are used in random.

4.6 Summary of the application case experiences

In this study the WasteWater measurement time series database has provided the test
bench for experimenting with automated tools for constructing fuzzy inference systems.
Most experiments were performed using Matlab Fuzzy Logic Toolbox with a full evalua-
tion copy. The aim was to explore what is possible with commercially available tools.

Preprocessing, division to different data sets (training/testing and validation) and com-
plexity control of the generated models were considered. The generated models were
evaluated on unseen validation data set. Sequential forward selection was found useful for
selecting the input variables to include into the model. New inputs were added to the
model only if they could produce better fitting models for separate testing data set.
ANFIS method was used for tuning the parameters in the FIS models.

Experiments were also performed using the fuzzyTech tool. The tested demo version was,
however, strongly limited in the size of models that could be evaluated (number of data
samples and the maximum number of input variables were strongly limited).
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5 Running generated fuzzy models with RapidBase

In this Section we consider the applicability of studied methods to RapidBase. The
following model depicts the overall process combining the commercial fuzzy tool and
RapidBase.

Case study data

x z y
x z y
x z y
.
.
.

pre-process case
data

apply fuzzyTech or
MatLab

fuzzy model

refine the model convert model to
RapidBase

Use the
model with
RapidBase

Figure 5-1. The overall process.

In the sequel, both Matlab and fuzzyTech applicability with RapidBase is addressed in the
subsections that follow.

5.1.1 Matlab

The Fuzzy Toolbox of Matlab produces Takagi-Sugeno type fuzzy models. This already
poses a problem for the model applicability in RapidBase cause the fuzzy model used in
RapidBase is of the Mamdani type. In addition, the other methods used in fuzzy inference
processing, like rule antecedent proposition combination method and the rule implication
method offer more flexibility in Matlab than RapidBase can currently handle.

In order for RapidBase to support Matlab generated fuzzy models, at least the following
additional feature has to be implemented in RapidBase:

• Tagaki-Sugeno inference method (currently only Mamdani)

In addition, a program has to be implemented to interpret and convert the Matlab output
file format to proper Rapidbase RQL file.

5.1.2 fuzzyTech

fuzzyTech produces Mamdani style fuzzy models and thus is more straightforward than
Matlab to use with RapidBase. fuzzyTech uses the DoS (Degree of Support) values for
rules to adapt the fuzzy model to the set of teaching examples. The DoS functionality was
implemented in RapidBase during the course of the Fume project to support fuzzyTech
models.
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Still, a program is needed to interpret and convert the fuzzyTech output file format to
proper Rapidbase RQL file.

6 Conclusions

We have analyzed possibilities of automatic extraction of fuzzy inference (FIS) models
from industrial observation data. Theoretical approaches to identification of both the
Mamdani and Takagi-Sugeno models has been studies and limitations thereof analyzed.
The second step of model extraction—the parameter identification—turns out to be fea-
sible to be performed automatically using various methods. However, the first step—the
structural identification—is demanding and typically requires some human input. The
structural identification includes choices of rule types and selection of input and output
variables. There are some auxiliary methods, like fuzzy clustering of input space, that
may be of some help but they have to be carefully chosen and tuned, for each application,
by human experts. Also, some techniques of parameter identification, like the evaluation
of the Degree of Support (DoS) in fuzzyTech, may disguise for structural identification.
This approach is however computationally feasible for very small variable spaces (under
10 variables) because of the limitations of the initial rule set size in fuzzyTech. Better
results are obtained in Matlab with the approach utilizing the neurofuzzy (ANFIS) learn-
ing together with the sequential forward search for variable identification.

The real-life water treatment case study was performed using commercial products Mat-
lab and fuzzyTech. Both products are applicable in the sense that they produce executable
and verifiable FIS models. Models produced with fuzzyTech may be automatically con-
verted to RapidBase models. The Matlab output requires either additional conversion
from the Takagi-Sugeno to Mamdani model or an extension to the RapidBase inference
engine to support the Takagi-Sugeno model.
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