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Abstract. In OLAP models, or data cubes, aggregates have to be recalculated
when the underlying base data changes. This may cause performance problems
in real-time OLAP systems, which continuously accommodate huge amounts of
measurement data. To optimize the aggregate computations, a new consistency
criterion called the tolerance invariant is proposed. Lazy aggregates are aggre-
gates that are recalculated only when the tolerance invariant is violated, i.e., the
error of the previously calculated aggregate exceeds the given tolerance. An in-
dustrial case study is presented. The prototype implementation is described, to-
gether with the performance results.

1 Introduction

Traditional OLAP (on-line analytical processing) [3] technology is developed mainly
for commercial analysis needs. Data from various sources is compiled into multiat-
tribute fact data tuples. They are used to compute multidimensional aggregates that
make up the essence of OLAP.

An industrial process is often a subject of extensive analysis, too. However, the
traditional OLAP technology is insufficient for such analysis. It lacks support for real-
time operation and efficient time series analysis. Usually, the industrial analysis
model, comprising of measurement data and derived data, must be up-to date instantly
when the contents of the underlying data sources change. We claim that a certain level
of temporal consistency [8] must be maintained, in an industrial analysis model.

In this paper, we present the requirements for Industrial OLAP (IOLAP) for indus-
trial process analysis. We analyze problems encountered in a case study, having to do
with handling time series data and maintaining consistency of the analysis structure in
real-time. We introduce a method to decrease the amount of computation required to
update the analysis model, by allowing the model to have some value-inaccuracy. We
call this the lazy aggregation method. We present an example of a typical industrial
application and summarize experimental results of applying the method.
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A theoretical abstraction of multidimensional analysis model, the data cube, was
refined in [4]. The basic computation models for data cube were reviewed in [1]. A
model for decomposition of data cube into a lattice was presented in [5]. Data cube
maintenance and refreshing issues were addressed in [7]. We already introduced a
time series database platform supporting active ECA rules [11].

The paper is organized as follows. In Section 2, we discuss IOLAP requirements.
In Section 3, we introduce the concept of accuracy-based consistency enforcement
and propose the lazy aggregate method. In Section 4, we focus on a case study and the
prototype implementation. We conclude in Section 5.

2 IOLAP Model

Similarly to traditional OLAP models, the IOLAP data model involves base data and
aggregate data. The base data reflects the current and past state of a process and is
usually stored in a process database. An example of a process database management
system implementation is given in [11].

Calculable data cubes may be represented as nodes in a combined aggregate lattice
[5]. The lattice has n+1 levels where n is the maximum number of dimensions. An
example of a 4-level aggregate lattice is given in Figure 1.
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Figure 1.  The aggregate lattice

The top level-3 (l = n = 3) aggregates are directly calculated from base data. They
may be expressed as a tuple < dimA, dimB, dimC, fact> where fact is a value of an ag-
gregate function over dimensions A, B, and C at a point (dimA, dimB, dimC) of a 3-
dimensional space. We chose to represent both the base and aggregate data using the
relational model. For example, if the base data is stored in a relational table having the
schema (id, dimA, dimB, dimC, value), the level 3 node for the AVG function is pro-
duced with the SQL query:

SELECT dimA, dimB, dimC, AVG(value)
FROM base_table
GROUP BY dimA, dimB, dimC;

The lower level aggregates can be calculated from precalculated upper-level aggre-
gates. We say that the aggregates at level l are calculated from the source data at level



l+1(l = 0, ..., n-1) and the level n is aggregated from the base (fact) data. The zero-
level node is a single value aggregated over the whole base data set. The lattice can be
also called an N-cube meaning a collection of N cubes where N = 2n.

The lattice may be materialized to a various extent. In two extreme cases, the ag-
gregate data may be totally calculated at query time or they may be totally material-
ized in advance. There has been some research effort aimed at maintaining lattice
consistency in a most efficient way, once the lattice is being refreshed [5, 7].

We take a different approach in this work. In IOLAP, the goal is to be able to per-
form real-time analysis using the latest process data. The temporal consistency of the
analysis data is expected to be within sub-second range. We thus assume the lattice is
fully materialized at all times, and we strive to avoid "insignificant" recalculations,
i.e. such aggregate recalculations that would not be required from the accuracy point
of view.

We propose a new consistency criterion that is based on numerical accuracy and
leads to the concept of lazy aggregation. A user sets an allowable tolerance for an
aggregate calculation error. Consequently, an aggregate value need not be recalcu-
lated if the existing value represents the current process within the given tolerance.

3 Lazy Aggregates

3.1 Definitions

Definition 1: Error band. Error band φv of variable v is defined as a maximum de-
viation of the measured value vi from a specific reference norm.

φv = 
i

max ( abs( ε(vi ) ) ), (1)

where i spans all measured occurrences of v, and ε(vi ) is an actual measurement error
of vi. Error band is typically expressed as an absolute percentage of full scale, e.g.
10%, and it is normally associated with a measurement equipment.

Definition 2: Tolerance. Tolerance αv of a variable v is an acceptable degree of
variation of v. It is also usually expressed as an absolute percentage of full scale.

The above two concepts seem to be similar but there is a semantic difference between
them: the error band stems from the physical characteristics of the measuring equip-
ment, and the tolerance is an externally given requirement. Note, that we expect the
measurement system to maintain, at any time the relation

φv ≤ αv  for every variable v. (2)

Sometimes the error band values are not known, and the tolerance values are used
instead. For simplicity of notation, we also assume that φv = αv, for base data. For the
purpose of evaluation of the error band of the aggregate values, we introduce the
concept of the base aggregate error band.



Definition 3: Base aggregate error band (BEB). Base aggregate error band BEBa of
an aggregate a is a maximum deviation of the aggregate value from a real exact value.
It is expressed as an absolute percentage of full scale. It is defined as a function:

BEBa = f(S, A), (3)

where S = {sj | j = 1, ..., m}  is the set of available source values, A = {αj | j = 1, ..., m}
is the set of the corresponding tolerance values, and m is the size of the source value
set. There is a binary (correspondence) relation < sj, αj> ⊂ R.

As we deal with the effect of propagating errors from function arguments to the func-
tion result, various approaches to error propagation may be used in order to establish
an appropriate BEB function for each aggregate. For example, if we treat measure-
ment values as value intervals, the interval arithmetic [6] may be applied.

BEB functions for some aggregates are trivial. For example, for the Maximum ag-
gregate:

BEBMAX = αj  such as MAX(S) = vj . (4)

In the case of the Average aggregate, the following approximation may be sufficient:

BEBAVG = AVG(A). (5)

We use BEB to characterize each lattice node element in terms of its maximum accu-
racy, i.e. the accuracy achieved when the node element value (aggregate value) is
recalculated form the source data having some tolerance. We now proceed to charac-
terize the error induced by not recalculating the aggregate.

We introduce the concept of an actual error band to reflect the instantaneous error
band of an aggregate. It is recalculated each time there is a change to source data.

Definition 4: Actual aggregate error band (AEB). Actual aggregate error band
AEB of a node element is defined as

AEBa = BEBa + abs( δ i
i

∑  ) (6)

where δi  is the error delta calculated for each i-th change (transaction) affecting a
source data variable:

δi = fa(vi, v-oldi , Pv) (7)

where vi and v-oldi are the new and old values of the source data and Pv is the power
(cardinality) of the set of vi values being aggregated. The function is aggregate-spe-
cific. The value of i is set to zero each time the aggregate value is recalculated.
Evaluation of AEB is triggered by any replacement of v-oldi with vi.

As a consistency criterion, we propose to maintain, in a lattice of aggregates, the
following invariant:

Definition 5: Tolerance invariant (consistency criterion). For each j-th element at
the p-th lattice node, the following holds:



p
p
j

jp
AEB α≤∀

,

(8)

where αp is a tolerance value associated with the aggregate at the node p.

3.2 Computational Model

The idea of the lazy aggregates is to delay the aggregate recalculation until the actual
error band of the aggregate value exceeds the given tolerance. We propose to main-
tain tolerance invariant by way of a standard ECA rule (trigger) mechanism [9]. An
ECA rule is associated with each aggregate at levels 1, ..., n. The aggregate recal-
culation at any level takes place in the following steps.

1. Event detection: a change of data source at level l is detected.
2. Condition evaluation: the tolerance invariant at level l-1 is checked
3. Action execution (conditional): the aggregate at level l-1 is recalculated

As a result, the change in the base data is propagated downward the lattice in an opti-
mized way. A possible scenario of aggregate recalculation is shown in Figure 2.
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Figure 2. An example of lazy aggregate computation

In the example, at time t1, the aggregated power consumption is calculated and the
base error band (BEB) is evaluated. At t2 and t3, the new measurement values are
arrived and the evaluation of the tolerance invariant is fired. The corresponding error
deltas are calculated but no aggregate recalculation is triggered as the resulting actual
error band (AEB) is still within the tolerance. At t4, the accumulated AEB exceeds
the tolerance value, which leads to aggregate recalculation and re-evaluation of BEB.
At t5, again, the tolerance invariant holds, and no aggregate recalculation is needed.



4 Implementation and Results

4.1 Case Study

ABB Industry Oy is a leading manufacturer of electric drive systems for heavy indus-
try. A typical product is a paper machine drive system [2]. It consists of few tens of
high-power electric motors (drives), together with the associated frequency convert-
ers, and a control and supervision system. In the case study, the requirement is to be
able to survey the overall drive operation in real-time. Drives are combined into drive
sections which, in turn, are grouped according to machine parts such as wire, press
and dryer. Several paper machines may be surveyed at a factory or at different loca-
tions, at the same time. Possible dimensions to be used in motor behavior analysis are
thus: section, machine part, machine, location, power range, type and manufacturing
year. Some of the dimensions may be considered different granularities of a single
dimension. For example, machine part, machine and location may be granularities of
the geographical dimension.

The variables measured at each motor are, typically, temperature, power and
torque. The measured values constitute the base data of the case study IOLAP model.
The data is collected at typical rate of one measurement record (a tuple of all meas-
urement values) per second per motor. For a 100-motor installation, the update rate of
100/s is attained, for any variable type. If we required that the lattice node values are
recalculated each time a source value changes, the required aggregate recalculation
rate would be (100 • 2n )/s = 1600/s. Such a rate would not be feasible on a low-cost
PC equipment. We apply the lazy aggregation method to reduce the recalculation rate
significantly.

4.2 Prototype Implementation

We have implemented a prototype of a general-purpose N-cube server called Rubic
[10]. Rubic is based on the existing RapidBase active time series database system
[12]. The aggregates in the data cube lattice are organized as relational database ta-
bles. Triggers are associated with all time series and aggregates.

All the functionality of checking the tolerance invariant and computing the error
band values is implemented in a detached Rubic Aggregate Engine process. When
any value in time series or an aggregate node is changed, an appropriate trigger is
fired and the aggregate engine handles the action. The action execution starts with the
tolerance invariant checking and, depending on the result, either the actual error band
is updated or the lattice node value is recalculated.

The analysis data is generated with a process data generator, which feeds new
measurements values for each motor periodically. The aggregated results are analyzed
using some general-purpose reporting tool connected to RapidBase via the ODBC
driver.



4.3 Performance Results

The test scenario consists of 100 motors and the power of each motor is measured.
The measurements are assumed to have a random walk behavior and each motor is
handled independently.

The motors are analyzed on the basis of four dimensions (type, power range, year
of manufacturing, and machine part). Thus, the used aggregate lattice contains 24=16
tables, which are all materialized. The experiment is performed separately for two
aggregate functions, AVG(power) and SUM(power). These functions were selected to
represent distributive and algebraic aggregate function groups [4], respectively. We
do not address holistic aggregate functions in our experiment. The arrival rate of the
measurement values for each motor is 1/s. The tolerance values are varied within a
range of 2% to 20%.

During the test run, the number of lattice recalculations is measured. The lattice re-
calculation is performed, when an updated error band exceeds the given tolerance.
The result is expressed as a lattice recalculation percentage that is calculated with the
following formula (for a given period of time):

nstransactioinputofno

ionsrecalculatelementlatticeofno
RECALC

ofno ___.2

____.
%

.dim__. ∗
= (9)

The test was run under Windows NT 4 in a 333 MHz Pentium Pro PC with main
memory of 128Mb. The experimental results are presented in Figure 3.
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Figure 3. Experimental results

The experimental results begin with a tolerance value of 2%. The lower values were
not attainable due to performance limitations. It can be clearly seen that, by using
affordable tolerance level, say 5%, it is possible to reduce the number of lattice recal-
culations drastically. Furthermore, regardless of the aggregate function type, the per-
formance is alike. However, neither function is demanding in terms of complexity nor
are their BEB and AEG functions. More complex algebraic aggregate function may
cause indeterminate performance degradation when using the lazy aggregate method.



5 Conclusions

We discussed the requirements for using OLAP in industrial analysis, and we found
the OLAP concept useful for the purpose. However, the traditional OLAP approach
must be enhanced to fulfill industrial analysis needs. Typical industrial data is time-
based and it has a fast arrival rate. The accuracy of the data at various levels of the
OLAP structure (data cube) varies in time as the underlying base data changes. We
took the advantage of this phenomenon to utilize the accuracy of computations in the
performance optimization scheme called lazy aggregates. Lazy aggregates are the
aggregates that are calculated only if the accuracy of the previously calculated values
is not within given tolerance. We defined the concepts of error band and the consis-
tency criterion in the form of the tolerance invariant. We propose, how the lazy ag-
gregate method can be implemented using an active main memory database. We pro-
vide a case study based on a paper industry application. We also provide a prototype
implementation of a general-purpose N-cube server called Rubic. We analyze our
lazy aggregate approach using Rubic and we find that, by using the lazy aggregate
concept, it is possible to perform complex industrial analysis on a standard PC plat-
form in the presence of fast data acquisition.
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