wO 2015/180793 A1 || I} 00 O 0000 00000 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau _/

=

AT 0O O

(10) International Publication Number

(43) International Publication Date / WO 2015/180793 A1
3 December 2015 (03.12.2015) WIPOIPCT
(51) International Patent Classification: WOLSKI, Antoni [PL/DE]; c¢/o Huawei Technologies
GO6F 7/32(2006.01) Duesseldorf GmbH, Riesstr. 25, 80992 Munich (DE).
(21) International Application Number: (74) Agent: KREUZ, Georg M; c/o Huawei Technologies
PCT/EP2014/061269 Duesseldorf GmbH, Messerschmittstr. 4, 80992 Munich
(22) International Filing Date: (DE).
30 May 2014 (30.05.2014) (81) Designated States (unless otherwise indicated, for every
-) . kind of national protection available): AE, AG, AL, AM,
(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(71) Applicant (for all designated States except US): HUAWEI HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
TECHNOLOGIES CO.LTD [CN/CN]; Huawei Admin- KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
istration Building, Bantian Longgang, Shenzhen, Guang- MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
dong 518129 (CN). OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
(72) Inventors; and SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
(71) Applicants (for US only): BEHERA, Mahesh Kumar IN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
[IN/DE]; c/o Huawei Technologies Duesseldorf GmbH, ZW.
Riesstr. 25, 80992 Munich (DE). RAMAMURTHI’ (84) Designated States (unless otherwise indicated, for every
Prasanna Venkatesh [IN/DE]; c/o Huawei Technologies kind of regional protection available): ARIPO (BW, GH,
Duesseldorf GmbH, Riesstr. 25, 80992 Munich (DE). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
[Continued on next page]
(54) Title: PARALLEFL MERGESORTING

creating 4

(57) Abstract: The invention relates to a sorting method (1100) for sorting in-

sorting -

sorting -

reading —

N
5
N
N

Fig. 11

put data distributed over local memory partitions (401, 402, 403, 404) of a
plurality of interconnected processing nodes (701, 702), the sorting method
comprising: sorting (1101) the distributed input data locally per processing
node (701, 702) by deploying first processes on the processing nodes (701,
' 702) to produce a plurality of sorted lists on the local memory partitions (401,
' 402, 403, 404) of the processing nodes (701, 702); creating (1102) a sequence
: of range blocks (703, 704, 713, 714) on the local memory partitions of the pro-
cessing nodes (701, 702), wherein each range block is configured to store data
values falling within its range; copying (1103) the plurality of sorted lists to the
sequence of range blocks (703, 704, 713, 714) by deploying second processes
on the processing nodes (701, 702), wherein each range block (703, 704, 713,
714) receives elements of the sorted lists which values are falling within its
range; sorting (1104) the elements of the range blocks (703, 704, 713, 714) loc-
ally per processing node (701, 702) by using the second processes to produce
sorted elements on the range blocks (703, 704, 713, 714); and reading (1105)
the sorted elements from the sequence of range blocks (703, 704, 713, 714) se-
! quentially with respect to their range to obtain the sorted input data.

WO 2015/180793 A1 IV 900 0T 0000 A0

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Published:
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))

10

15

20

25

30

35

WO 2015/180793 PCT/EP2014/061269

PARALLEL MERGESORTING

TECHNICAL FIELD

The present disclosure relates to a sorting method and a processing system comprising a
plurality of interconnected processing nodes for sorting input data distributed over the
processing nodes. The disclosure further relates to computer hardware characterized by

asymmetric memory and a parallel sorting method for such asymmetric memory.

BACKGROUND

On modern computer hardware 100 characterized by asymmetric memory for each
execution unit, e.g. processor 101, 103 and core 109, 119, all memory locations are
divided into local 107 (with respect to node 0 101) and remote 117 memory, as shown in
Fig. 1. The access 108 to the local memory 107 is faster than to the remote memory 117
because of the different lengths of the physical access path 102, as illustrated in Fig. 1.
The problem introduced by asymmetric memory is that, in computing methods being
agnostic to memory asymmetry, execution costs are higher than those that can be

achieved with optimized use of local and remote memory.

Sorting is considered to be one of the basic operations used in many fields of computing.
For example, the need for sorting in asymmetric memory is evident while sorting query
results produced by parallel query methods in database systems. SQL (Structured Query
Language) clauses “ORDER BY” and “GROUP BY” require such sorting. Some join
methods, like sort-merge join also require sorting. There are many algorithms that make
use of multiple cores of a system to make the sorting parallel and improve the
performance. But none of these algorithms takes the asymmetry of the memory
architectures into consideration. Currently, in sorting algorithms, the data is partitioned
randomly and different threads are allowed to work on this data randomly. This leads to
the excessive use of remote access and the socket interconnection, and thus can

severely limit the system throughput.

Modern processors 200 employ multi cores 201, 202, 203, 204, main memory 205 and
several levels of memory caches 206, 207, 208 as illustrated in Fig. 2. Current sorting

1

10

15

20

25

30

35

WO 2015/180793 PCT/EP2014/061269

algorithms, e.g. as described by US 8332595 B2, US 6427148 B1, US 5852826 A and US
7536432 B2 do not address the problems of data locality and cache-consciousness. That
leads to frequent cache misses and inefficient execution. Processors are equipped with
SIMD (single-instruction, multiple-data) hardware that allows performing so-called
vectorized processing, that is, executing the same operation on a series of closely
adjacent data. Current sorting methods are not optimized for SIMD.

SUMMARY

It is the object of the invention to provide an improved sorting technique.

This object is achieved by the features of the independent claims. Further implementation
forms are apparent from the dependent claims, the description and the figures.

The invention as described in the following is based on the finding that an improved
sorting technique can be provided by taking advantage of the differences in asymmetric
memory access latency to reduce the memory access cost significantly in highly memory-

access-intensive sorting algorithms.

In order to describe the invention in detail, the following terms, abbreviations and
notations will be used:

DBMS: Data Base Management System.
SQL: Structured Query Language.
CPU: Central Processing Unit.

SIMD: Single Instruction, Multiple Data.
NUMA: Non-Uniform Memory Access.

Database management systems (DBMSs) are specially designed applications that interact
with the user, other applications, and the database itself to capture and analyze data. A
general-purpose database management system (DBMS) is a software system designed to
allow the definition, creation, querying, update, and administration of databases. Different
DBMSs can interoperate by using standards such as SQL and ODBC or JDBC to allow a
single application to work with more than one database.

10

15

20

25

30

WO 2015/180793 PCT/EP2014/061269

SQL (Structured Query Language) is a special-purpose programming language designed
for managing data held in a relational database management system (RDBMS).
Originally based upon relational algebra and tuple relational calculus, SQL consists of a
data definition language and a data manipulation language. The scope of SQL includes
data insert, query, update and delete, schema creation and modification, and data access

control.

Single instruction, multiple data (SIMD), is a class of parallel computers in a classification
of computer architectures. It describes computers with multiple processing elements that
perform the same operation on multiple data points simultaneously. Thus, such machines
exploit data level parallelism, for example, array processors or GPUs.

According to a first aspect, the invention relates to a sorting method for sorting input data
distributed over local memory partitions of a plurality of interconnected processing nodes,
the sorting method comprising: sorting the distributed input data locally per processing
node by deploying first processes on the processing nodes to produce a plurality of sorted
lists on the local memory partitions of the processing nodes; creating a sequence of range
blocks on the local memory partitions of the processing nodes, wherein each range block
is configured to store data values falling within its range; copying the plurality of sorted
lists to the sequence of range blocks by deploying second processes on the processing
nodes, wherein each range block receives elements of the sorted lists which values are
falling within its range; sorting the elements of the range blocks locally per processing
node by using the second processes to produce sorted elements on the range blocks; and
reading the sorted elements from the sequence of range blocks sequentially with respect
to their range to obtain the sorted input data.

The efficiency of such sorting algorithm is improved due to the use of local data access to
a large extend thereby avoiding remote access penalty. Creating a sequence of range
blocks on the local memory partitions of the processing nodes allows using sequential
access to data instead of random access which improves access locality and cache
efficiency. Especially in the case of remote access, using sequential access leverages
pre-fetching that counterbalances the remote access penalty. Using vectors of adjacent
data items in computing allows making use of SIMD.

10

15

20

25

30

35

WO 2015/180793 PCT/EP2014/061269

In a first possible implementation form of the sorting method according to the first aspect,
the local memory partitions of the plurality of interconnected processing nodes are

structured as asymmetric memory.

Using sequential access to data instead of random access improves access locality and

cache efficiency on asymmetric memory.

In a second possible implementation form of the sorting method according to the first
aspect as such or according to the first implementation form of the first aspect, a number

of first processes is equal to a number of local memory partitions.

When a number of first processes is equal to a number of local memory partitions each
local memory partition can be processed in parallel by a respective first process thereby
increasing the processing speed.

In a third possible implementation form of the sorting method according to the first aspect
as such or according to any of the preceding implementation forms of the first aspect, the
first processes produce disjoint sorted lists.

When the first processes produce disjoint sorted lists, local sorting in one list can be
performed without accessing the other lists. That increases processing efficiency.

In a fourth possible implementation form of the sorting method according to the first
aspect as such or according to any of the preceding implementation forms of the first
aspect, the sorting the distributed input data locally per processing node is based on one
of a serial sorting procedure and a parallel sorting procedure.

Usage, in the sorting steps, of local-only memory access decreases the inter-socket
communication overhead and thus reduces computational complexity and increases

performance of the sorting method.

In a fifth possible implementation form of the sorting method according to the first aspect
as such or according to any of the preceding implementation forms of the first aspect, a
number of second processes is equal to a number of range blocks.

10

15

20

25

30

WO 2015/180793 PCT/EP2014/061269

When a number of second processes is equal to a number of range blocks each range
block can be processed in parallel by a respective second process thereby increasing the
processing speed.

In a sixth possible implementation form of the sorting method according to the first aspect
as such or according to any of the preceding implementation forms of the first aspect,
each range block has a different range.

When each range block has a different range, each memory partition can operate on
different data thereby allowing parallel processing which increases the processing speed.

In a seventh possible implementation form of the sorting method according to the first
aspect as such or according to any of the preceding implementation forms of the first
aspect, each range block receives a plurality of sorted lists, in particular a number of

sorted lists corresponding to the number of first processes.

Data in a similar range from different processing nodes can thus be concentrated on one
processing node which improves the computational efficiency of the method.

In an eighth possible implementation form of the sorting method according to the first
aspect as such or according to any of the preceding implementation forms of the first
aspect, a second process of the second processes running on one processing node reads
sequentially from the local memory of the one processing node and from the local memory
of the other processing nodes when copying the plurality of sorted lists to the sequence of
range blocks.

Usage, in the copy step, of sequential remote memory access reduces the remote access
penalty.

In a ninth possible implementation form of the sorting method according to the eighth
implementation form of the first aspect, the second process running on the one processing
node writes only to the local memory of the one processing node when copying the
plurality of sorted lists to the sequence of range blocks.

10

15

20

25

30

35

WO 2015/180793 PCT/EP2014/061269

Thus, the second process does not have to wait for intersocket connection response when

writing to memory.

In a tenth possible implementation form of the sorting method according to the first aspect
as such or according to any of the preceding implementation forms of the first aspect, the

sequential reading of the sorted elements from the sequence of range blocks is performed
by utilizing hardware pre-fetching.

Utilizing hardware pre-fetching increases the processing speed.

In an eleventh possible implementation form of the sorting method according to the first
aspect as such or according to any of the preceding implementation forms of the first
aspect, the second processes use vectorized processing, in particular vectorized
processing running on Single Instruction Multiple Data hardware blocks, for comparing
values of the sorted lists with ranges of the range blocks and for copying the plurality of
sorted lists to the sequence of range blocks.

Use of vectorized processing such as SIMD during the sorting steps improves the sort
performance. Use of vectorized processing such as SIMD while copying allows utilizing
the full memory bandwidth.

In a twelfth possible implementation form of the sorting method according to the first
aspect as such or according to any of the preceding implementation forms of the first
aspect, the plurality of processing nodes are interconnected by intersocket connections;
and a local memory of one processing node is a remote memory to another processing

node.

The method may be implemented on standard hardware architectures using asymmetric
memory interconnected by intersocket connections. The method may be applied on multi

core and many core processor platforms.

According to a second aspect, the invention relates to a processing system, comprising: a
plurality of interconnected processing nodes each comprising a local memory and a
processing unit, wherein input data is distributed over the local memories of the
processing nodes and wherein the processing units are configured: to sort the distributed

6

10

15

20

25

30

WO 2015/180793 PCT/EP2014/061269

input data locally per processing node to produce a plurality of sorted lists on the local
memories of the processing nodes, to create a sequence of range blocks on the local
memories of the processing nodes, each range block being configured to store data
values falling within its range, to copy the plurality of sorted lists to the sequence of range
blocks, each range block receiving elements of the sorted lists which values are falling
within its range, to sort the elements of the range blocks locally per processing node to
produce sorted elements on the range blocks; and to read the sorted elements from the
sequence of range blocks sequentially with respect to their range to obtain sorted input
data.

Such new processing system for sorting distributed input data is able to sort a large set of
randomly distributed values thereby maximizing the hardware resource utilization

efficiency.

According to a third aspect, the invention relates to a computer program product
comprising a readable storage medium storing program code thereon for use by a
computer, the program code sorting input data distributed over local memory partitions of
a plurality of interconnected processing nodes, the program code comprising: instructions
for sorting the distributed input data locally per processing node by using first processes
running on the processing nodes to produce a plurality of sorted lists on the local memory
partitions of the processing nodes; instructions for creating a sequence of range blocks on
the local memory partitions of the processing nodes, wherein each range block is
configured to store data values falling within its range; instructions for copying the plurality
of sorted lists to the sequence of range blocks by using second processes, wherein each
range block receives elements of the sorted lists which values are falling within its range;
instructions for sorting the elements of the range blocks locally per processing node by
using the second processes to produce sorted elements on the range blocks; and
instructions for reading the sorted elements from the sequence of range blocks
sequentially with respect to their range to obtain the sorted input data.

The computer program can be flexibly designed such that an update of the requirements
is easy to achieve. The computer program product may run on a multi core and many core

processing system.

10

15

20

25

30

WO 2015/180793 PCT/EP2014/061269

Aspects of the invention thus provide an improved sorting technique as further described
in the following.

BRIEF DESCRIPTION OF THE DRAWINGS

Further embodiments of the invention will be described with respect to the following

figures, in which:

Fig. 3 shows a schematic diagram illustrating an exemplary sorting method 300 according

to an implementation form.

Fig. 4 shows a schematic diagram illustrating an exemplary partitioning act 301 of the
sorting method 300 depicted in Fig. 3 according to an implementation form.

Fig. 5 shows a schematic diagram illustrating an exemplary local partition sorting act 302
of the sorting method 300 depicted in Fig. 3 according to an implementation form.

Fig. 6 shows a schematic diagram illustrating an exemplary thread deployment act 303a
within an extracting and sorting act 303 of the sorting method 300 depicted in Fig. 3

according to an implementation form.

Fig. 7 shows a schematic diagram illustrating an exemplary extracting and sorting act 303
of the sorting method 300 depicted in Fig. 3 according to an implementation form.

Fig. 8 shows a schematic diagram illustrating an exemplary local range sorting act 304 of
the sorting method 300 depicted in Fig. 3 according to an implementation form.

Fig. 9 shows a schematic diagram illustrating an exemplary merging act 305 of the sorting
method 300 depicted in Fig. 3 according to an implementation form.

Fig. 10 shows a schematic diagram illustrating an exemplary method 1000 of sorting
query results in a database management system using parallel query processing over
partitioned data.

10

15

20

25

30

35

WO 2015/180793 PCT/EP2014/061269

Fig. 11 shows a schematic diagram illustrating an exemplary sorting method 1100

according to an implementation form.

DETAILED DESCRIPTION OF EMBODIMENTS

In the following detailed description, reference is made to the accompanying drawings,
which form a part thereof, and in which is shown by way of illustration specific aspects in
which the disclosure may be practiced. It is understood that other aspects may be utilized
and structural or logical changes may be made without departing from the scope of the
present disclosure. The following detailed description, therefore, is not to be taken in a
limiting sense, and the scope of the present disclosure is defined by the appended claims.

The devices and methods described herein may be based on sorting distributed input
data, local memory partitions and interconnected processing nodes. It is understood that
comments made in connection with a described method may also hold true for a
corresponding device or system configured to perform the method and vice versa. For
example, if a specific method step is described, a corresponding device may include a unit
to perform the described method step, even if such unit is not explicitly described or
illustrated in the figures. Further, it is understood that the features of the various
exemplary aspects described herein may be combined with each other, unless specifically
noted otherwise.

The methods and devices described herein may be implemented in hardware
architectures including asymmetric memory and data base management systems, in
particular DBMS using SQL. The described devices and systems may include integrated
circuits and/or passives and may be manufactured according to various technologies. For
example, the circuits may be designed as logic integrated circuits, analog integrated
circuits, mixed signal integrated circuits, optical circuits, memory circuits and/or integrated

passives.

Fig. 3 shows a schematic diagram illustrating an exemplary sorting method 300 for sorting
input data distributed over local memory partitions 107, 117 of a plurality of interconnected
processing nodes 101, 103, e.g. of a hardware system 100, 200 described above with
respect to Fig. 1 and Fig. 2 according to an implementation form.

10

15

20

25

30

35

WO 2015/180793 PCT/EP2014/061269

The sorting method 300 may include partitioning 301 the distributed input data over
asymmetric memory obtaining multiple memory partitions. The sorting method 300 may
include sorting 302 the memory partitions locally, e.g. by using any known local sorting
method. The sorting act 302 may be performed for each memory partition. The sorting
method 300 may include extracting and copying 303 results of the local sorting 302 to
ranges, i.e. memory sections configured to store data falling within specific ranges. The
extracting and copying act 303 may be performed for each memory partition. The sorting
method 300 may include sorting 304 each range locally, e.g. by using any known local
sorting method. The sorting act 304 may be performed for each range. The sorting
method 300 may include merging 305 the sorted ranges. The different sorting steps or
acts are further described below with respect to Figs. 4 t0 9.

The method 300 described in this disclosure may sort a large set of randomly distributed
values within five steps and may therefore be able to maximize the hardware resource
utilization efficiency. This method 300 takes advantage of differences in asymmetric
memory access latency, to reduce the memory access cost significantly in highly memory-
access-intensive algorithms like sorting.

Fig. 4 shows a schematic diagram illustrating an exemplary partitioning act 301 of the
sorting method 300 depicted in Fig. 3 according to an implementation form.

Input data is partitioned over asymmetric memory 400. The input data is distributed over
the memory banks 401, 402, 403, 404 of the asymmetric memory 400. This partitioning
step 301 may be optional because most parallel data processing methods, like parallel

query processing methods, produce the partitioned data.

Fig. 5 shows a schematic diagram illustrating an exemplary local partition sorting act 302
of the sorting method 300 depicted in Fig. 3 according to an implementation form.

Threads are deployed to sort the data locally. Data “1,5,3,2,6,4,7” on first memory bank
401 is sorted locally on first memory bank 401 providing sorted data “1,2,3,4,5,6,7”. Data
“5,3,2,4,7,6,1” on second memory bank 402 is sorted locally on second memory bank 402
providing sorted data “1,2,3,4,5,6,7”. Data “1,2,3,4,5,6,7” on third memory bank 403 is
sorted locally on third memory bank 403 providing sorted data “1,2,3,4,5,6,7”. Data

10

10

15

20

25

30

35

WO 2015/180793 PCT/EP2014/061269

“7,6,5,4,3,2,1” on fourth memory bank 404 is sorted locally on fourth memory bank 404
providing sorted data “1,2,3,4,5,6,7".

The number of threads may be equal to the number of partitions (Four partitions 401, 402,
403, 404 are shown in Fig.5, but any other number is possible). All the threads may
produce disjoint sorted lists that may be merged as described below, to get the final
sorted output. Any sorting method can be used for the sorting act 302, serial or parallel.
Local access is fully utilized.

Fig. 6 shows a schematic diagram illustrating an exemplary thread deployment act 303a
within an extracting and sorting act 303 of the sorting method 300 depicted in Fig. 3

according to an implementation form.

Based on the data sample, a range set 600 may be created, which may be used to
distribute the sorted data among different threads. The range may be a subset of input
data containing values of a given value range, e.g. ranging from 1 to 7 in the example of
Fig. 6. The ranges may be calculated to be of (approximately) the same size. This may be
achieved with a value distribution histogram obtained with sampling performed during the
sorting phase. The ranges may be calculated based on data from all the partitions 401,
402, 403, 404. In Fig. 6 four ranges are created, a first range including data values 1 and
2, a second range including data values 3 and 4, a third range including data values 5 and
6 and a fourth range including data value 7.

The number of threads, e.g. 4 according to Fig. 6, but any other number is possible, may
be the same as the number of ranges. A first thread “Thread 1” is associated to the first
range, a second thread “Thread 2” is associated to the second range, a third thread
“Thread 3” is associated to the third range and a fourth thread “Thread 4” is associated to
the fourth range.

Based on the number of ranges the same number of range blocks of memory may be
created in different memory banks. The number of range blocks in each memory bank
may be the same to make use of all the cores being available.

Fig. 7 shows a schematic diagram illustrating an exemplary extracting and sorting act 303
of the sorting method 300 depicted in Fig. 3 according to an implementation form.
11

10

15

20

25

30

WO 2015/180793 PCT/EP2014/061269

The threads may be deployed to copy the data from the sorted lists 401, 402, 403, 404 to
the newly created range blocks 703, 704, 713, 714 based on the value. As a result, each
range block 703, 704, 713, 714 will have multiple sorted lists within a given value range. In
the example of Fig. 7, a first range block 703 in memory bank 0, 701 includes data values
1 and 2, a second range block 704 in memory bank 0, 701 includes data values 3 and 4, a
third range block 713 in memory bank 1, 702 includes data values 4 and 5 and a fourth
range block 714 in memory bank 1, 702 includes data value 7. Threads may write only to
local memory and may read sequentially from both local and remote memory. While
performing value comparisons, the threads may use adjacent serial data. The advantage
of SIMD may be utilized.

Fig. 8 shows a schematic diagram illustrating an exemplary local range sorting act 304 of
the sorting method 300 depicted in Fig. 3 according to an implementation form.

The same threads (one per range block) may be applied as described above with respect
to Figs. 6 and 7 to perform an in-place sort of the data copied. The first range block 703 in
memory bank 0 that may be implemented on node 0, 701 may sort data from “12121212”
to “11112222”, e.g. by using Thread 0. The second range block 704 in memory bank 0
that may be implemented on node 0, 701 may sort data from “34343434” {0 “33334444”,
e.g. by using Thread 1. The third range block 713 in memory bank 1 that may be
implemented on node 1, 702 may sort data from “56565656” to “55556666”, e.g. by using
Thread 3. The fourth range block 714 in memory bank 1 that may be implemented on

node 1, 702 may sort data from “7777” to “7777”, e.g. by using Thread 3.

As a result, each block 703, 704, 713, 714 may have sorted data in the specific range.
The local sort may be performed with any known sorting method, e.g. serial or parallel.
The locality of data access may be fully utilized. The organization of data may help to
utilize SIMD for comparison and copying.

Fig. 9 shows a schematic diagram illustrating an exemplary merging act 305 of the sorting
method 300 depicted in Fig. 3 according to an implementation form.

To obtain the sorted results, iteration may be performed over the sequence of range
blocks 703, 704, 713, 714 and the data may be read. The data may be read sequentially,

12

10

15

20

25

30

WO 2015/180793 PCT/EP2014/061269

both from the local 701 and remote 702 locations and thus reducing the impact of socket-

to-socket communication by utilizing hardware pre-fetching.

Fig. 10 shows a schematic diagram illustrating an exemplary method 1000 of sorting
query results in a database management system using parallel query processing over
partitioned data.

Fig. 10 describes a specific method of sorting query results in a database management
system involving parallel query processing over partitioned data. An example query may
be expressed with an SQL statement being of the form “SELECT A, ... FROM table
WHERE ... ORDER BY A”. The method 1000 may apply to the execution of the ORDER
BY clause. The query processor may produce, in parallel worker threads, unsorted results
written to local memory (a partition) of each thread. This is illustrated by step 1 in Fig. 10.

In step 2, each unsorted partition may be sorted locally by a dedicated thread. In step 3,
the data may be repartitioned in such a way that (a) the data value ranges are calculated
to contain approximately equal amount of data, (b) the data value range partitions are
allocated to memory that is local to worker threads, and (c) the range partitions are
populated with the data matching the range by each worker thread sequentially scanning
the sorted partitions produced in step 2 and extracting the relevant data. In step 4, each
range may be sorted locally, producing a properly sorted part of the result set (result
partition). In step 5, the result set parts may be merged by linking the result partitions in a
proper order and reading the result partitions sequentially in that order.

In one example, the method 1000 may be applied to perform sorting in a database
management system in the process of executing an SQL query having the JOIN clause,
or expressed as implicit join. In that case, the steps 2 to 4 above may be applied to sort
input tables in the context of the merge-join method.

In another example, the method 1000 may be applied to perform sorting in a database
management system in the process of executing an SQL query having the GROUP BY
clause. In that case, the steps 2 to 4 above may be applied to sort the aggregate
calculation results (groups).

13

10

15

20

25

30

35

WO 2015/180793 PCT/EP2014/061269

Fig. 11 shows a schematic diagram illustrating an exemplary sorting method 1100 for
sorting input data distributed over local memory partitions of a plurality of interconnected

processing nodes according to an implementation form.

The method 1100 may include sorting 1101 the distributed input data locally per
processing node by deploying first processes on the processing nodes to produce a
plurality of sorted lists on the local memory partitions of the processing nodes. The
method 1100 may include creating 1102 a sequence of range blocks on the local memory
partitions of the processing nodes, wherein each range block is configured to store data
values falling within its range. The method 1100 may include copying 1103 the plurality of
sorted lists to the sequence of range blocks by deploying second processes on the
processing nodes, wherein each range block receives elements of the sorted lists which
values are falling within its range. The method 1100 may include sorting 1104 the
elements of the range blocks locally per processing node by using the second processes
to produce sorted elements on the range blocks. The method 1100 may include reading
1105 the sorted elements from the sequence of range blocks sequentially with respect to
their range to obtain the sorted input data.

The sorting 1101 may correspond to the sorting 302 the memory partitions locally as
described above with respect to Fig. 3. The creating 1102 and copying 1103 may
correspond to the extracting and copying act 303 as described above with respect to Fig.
3. The sorting 1104 may correspond to the sorting 304 each range locally as described
above with respect to Fig. 3. The reading 1105 may correspond to the merging 305 the
sorted ranges as described above with respect to Fig. 3.

In one example, the local memory partitions of the plurality of interconnected processing
nodes may be structured as asymmetric memory. In one example, a number of first
processes may be equal to a number of local memory partitions. In one example, the first
processes may produce disjoint sorted lists. In one example, the sorting the distributed
input data locally per processing node may be based on one of a serial sorting procedure
and a parallel sorting procedure. In one example, a number of second processes may be
equal to a number of range blocks. In one example, each range block may have a
different range. In one example, each range block may receive a plurality of sorted lists, in
particular a number of sorted lists corresponding to the number of first processes. In one
example, a second process of the second processes running on one processing node

14

10

15

20

25

30

35

WO 2015/180793 PCT/EP2014/061269

may read sequentially from the local memory of the one processing node and from the
local memory of the other processing nodes when copying the plurality of sorted lists to
the sequence of range blocks. In one example, the second process running on the one
processing node may write only to the local memory of the one processing node when
copying the plurality of sorted lists to the sequence of range blocks. In one example, the
sequential reading of the sorted elements from the sequence of range blocks may be
performed by utilizing hardware pre-fetching. In one example, the second processes may
use vectorized processing, in particular vectorized processing running on Single
Instruction Multiple Data hardware blocks, for comparing values of the sorted lists with
ranges of the range blocks and for copying the plurality of sorted lists to the sequence of
range blocks. In one example, the plurality of processing nodes may be interconnected by
intersocket connections and a local memory of one processing node may be a remote

memory to another processing node.

The invention includes a method making use of the difference in access time for the
different memory bank in a system. This may be achieved by minimal use of the socket to
socket communication link. Until today, no method has been deployed to sort a randomly
arranged data which minimizes the random access of data across different sockets. By
using measurement tools, the data flow across the sockets and the access patterns may
be determined for a sort operation.

The methods, systems and devices described herein may be implemented as software in
a Digital Signal Processor (DSP), in a micro-controller or in any other side-processor or as
hardware circuit within an application specific integrated circuit (ASIC).

The invention can be implemented in digital electronic circuitry, or in computer hardware,
firmware, software, or in combinations thereof, e.g. in available hardware of conventional
mobile devices or in new hardware dedicated for processing the methods described

herein.

The present disclosure also supports a computer program product including computer
executable code or computer executable instructions that, when executed, causes at least
one computer to execute the performing and computing steps described herein, in
particular the methods 300 as described above with respect to Figs. 3 to 9 and the
methods 1000, 1100 described above with respect to Figs. 10 and 11. Such a computer

15

10

15

20

25

30

35

WO 2015/180793 PCT/EP2014/061269

program product may include a readable storage medium storing program code thereon
for use by a computer. The program code may be configured to sort input data distributed
over local memory partitions of a plurality of interconnected processing nodes. The
program code may include instructions for sorting the distributed input data locally per
processing node by using first processes running on the processing nodes to produce a
plurality of sorted lists on the local memory partitions of the processing nodes; instructions
for creating a sequence of range blocks on the local memory partitions of the processing
nodes, wherein each range block is configured to store data values falling within its range;
instructions for copying the plurality of sorted lists to the sequence of range blocks by
using second processes, wherein each range block receives elements of the sorted lists
which values are falling within its range; instructions for sorting the elements of the range
blocks locally per processing node by using the second processes to produce sorted
elements on the range blocks; and instructions for reading the sorted elements from the
sequence of range blocks sequentially with respect to their range to obtain the sorted
input data.

While a particular feature or aspect of the disclosure may have been disclosed with
respect to only one of several implementations, such feature or aspect may be combined
with one or more other features or aspects of the other implementations as may be
desired and advantageous for any given or particular application. Furthermore, to the
extent that the terms "include”, "have", "with", or other variants thereof are used in either
the detailed description or the claims, such terms are intended to be inclusive in a manner
similar to the term "comprise". Also, the terms "exemplary”, "for example" and "e.g." are

merely meant as an example, rather than the best or optimal.

Although specific aspects have been illustrated and described herein, it will be
appreciated by those of ordinary skill in the art that a variety of alternate and/or equivalent
implementations may be substituted for the specific aspects shown and described without
departing from the scope of the present disclosure. This application is intended to cover

any adaptations or variations of the specific aspects discussed herein.

Although the elements in the following claims are recited in a particular sequence with
corresponding labeling, unless the claim recitations otherwise imply a particular sequence
for implementing some or all of those elements, those elements are not necessarily

intended to be limited to being implemented in that particular sequence.
16

WO 2015/180793 PCT/EP2014/061269

Many alternatives, modifications, and variations will be apparent to those skilled in the art
in light of the above teachings. Of course, those skilled in the art readily recognize that
there are numerous applications of the invention beyond those described herein. While
the present inventions has been described with reference to one or more particular
embodiments, those skilled in the art recognize that many changes may be made thereto
without departing from the scope of the present invention. It is therefore to be understood
that within the scope of the appended claims and their equivalents, the invention may be

practiced otherwise than as specifically described herein.

17

10

15

20

25

WO 2015/180793 PCT/EP2014/061269

CLAIMS:

1. A sorting method (1100) for sorting input data distributed over local memory
partitions (401, 402, 403, 404) of a plurality of interconnected processing nodes (701,
702), the sorting method comprising:

sorting (1101) the distributed input data locally per processing node (701, 702) by
deploying first processes on the processing nodes (701, 702) to produce a plurality of
sorted lists on the local memory partitions (401, 402, 403, 404) of the processing nodes
(701, 702);

creating (1102) a sequence of range blocks (703, 704, 713, 714) on the local
memory partitions of the processing nodes (701, 702), wherein each range block is

configured to store data values falling within its range;

copying (1103) the plurality of sorted lists to the sequence of range blocks (703,
704, 713, 714) by deploying second processes on the processing nodes (701, 702),
wherein each range block (703, 704, 713, 714) receives elements of the sorted lists which

values are falling within its range;

sorting (1104) the elements of the range blocks (703, 704, 713, 714) locally per
processing node (701, 702) by using the second processes to produce sorted elements
on the range blocks (703, 704, 713, 714); and

reading (1105) the sorted elements from the sequence of range blocks (703, 704,
713, 714) sequentially with respect to their range to obtain the sorted input data.

2. The sorting method (1100) of claim 1,

wherein the local memory partitions (401, 402, 403, 404) of the plurality of
interconnected processing nodes (701, 702) are structured as asymmetric memory.

3. The sorting method (1100) of claim 1 or 2,

wherein a number of first processes is equal to a number of local memory
partitions (401, 402, 403, 404).

4, The sorting method (1100) of one of the preceding claims,
18

10

15

20

25

WO 2015/180793 PCT/EP2014/061269

wherein the first processes produce disjoint sorted lists.
5. The sorting method (1100) of one of the preceding claims,

wherein the sorting the distributed input data locally per processing node (701,
702) is based on one of a serial sorting procedure and a parallel sorting procedure.

6. The sorting method (1100) of one of the preceding claims,

wherein a number of second processes is equal to a number of range blocks (703,
704,713, 714).

7. The sorting method (1100) of one of the preceding claims,
wherein each range block (703, 704, 713, 714) has a different range.
8. The sorting method (1100) of one of the preceding claims,

wherein each range block (703, 704, 713, 714) receives a plurality of sorted lists,

in particular a number of sorted lists corresponding to the number of first processes.
9. The sorting method (1100) of one of the preceding claims,

wherein a second process of the second processes running on one processing
node (701, 702) reads sequentially from the local memory of the one processing node
(701) and from the local memory of the other processing nodes (702) when copying the
plurality of sorted lists to the sequence of range blocks (703, 704, 713, 714).

10. The sorting method (1100) of claim 9,

wherein the second process running on the one processing node (701) writes only
to the local memory of the one processing node (701) when copying the plurality of sorted
lists to the sequence of range blocks (703, 704, 713, 714).

11. The sorting method (1100) of one of the preceding claims,

wherein the sequential reading of the sorted elements from the sequence of range
blocks (703, 704, 713, 714) is performed by utilizing hardware pre-fetching.

12. The sorting method (1100) of one of the preceding claims,

19

10

15

20

25

WO 2015/180793 PCT/EP2014/061269

wherein the second processes use vectorized processing, in particular vectorized
processing running on Single Instruction Multiple Data hardware blocks, for comparing
values of the sorted lists with ranges of the range blocks (703, 704, 713, 714) and for
copying the plurality of sorted lists to the sequence of range blocks (703, 704, 713, 714).

13. The sorting method (1100) of one of the preceding claims,

wherein the plurality of processing nodes (701, 702) are interconnected by

intersocket connections; and

wherein a local memory of one processing node (701) is a remote memory to

another processing node (702).
14. A processing system (100), comprising:

a plurality of interconnected processing nodes (101, 103) each comprising a local
memory (107, 117) and a processing unit (109, 119), wherein input data is distributed over
the local memories (107, 117) of the processing nodes (101, 103) and wherein the
processing units (109, 119) are configured:

to sort (1001) the distributed input data locally per processing node (701, 702) by
deploying first processes on the processing nodes (701, 702) to produce a plurality of
sorted lists on the local memory partitions (401, 402, 403, 404) of the processing nodes
(701, 702);

to create (1102) a sequence of range blocks (703, 704, 713, 714) on the local
memory partitions of the processing nodes (701, 702), wherein each range block is
configured to store data values falling within its range;

to copy (1103) the plurality of sorted lists to the sequence of range blocks (703,
704, 713, 714) by deploying second processes on the processing nodes (701, 702),
wherein each range block (703, 704, 713, 714) receives elements of the sorted lists which

values are falling within its range;

to sort (1104) the elements of the range blocks (703, 704, 713, 714) locally per
processing node (701, 702) by using the second processes to produce sorted elements
on the range blocks (703, 704, 713, 714); and

20

10

15

20

25

WO 2015/180793 PCT/EP2014/061269

to read (1105) the sorted elements from the sequence of range blocks (703, 704,
713, 714) sequentially with respect to their range to obtain the sorted input data.

15. A computer program product comprising a readable storage medium storing
program code thereon for use by a computer, the program code sorting input data
distributed over local memory partitions of a plurality of interconnected processing nodes,

the program code comprising:

instructions for sorting (1101) the distributed input data locally per processing node
(701, 702) by deploying first processes on the processing nodes (701, 702) to produce a
plurality of sorted lists on the local memory partitions (401, 402, 403, 404) of the
processing nodes (701, 702);

instructions for creating (1102) a sequence of range blocks (703, 704, 713, 714) on
the local memory partitions of the processing nodes (701, 702), wherein each range block
is configured to store data values falling within its range;

instructions for copying (1103) the plurality of sorted lists to the sequence of range
blocks (703, 704, 713, 714) by deploying second processes on the processing nodes
(701, 702), wherein each range block (703, 704, 713, 714) receives elements of the
sorted lists which values are falling within its range;

instructions for sorting (1104) the elements of the range blocks (703, 704, 713,
714) locally per processing node (701, 702) by using the second processes to produce
sorted elements on the range blocks (703, 704, 713, 714); and

instructions for reading (1105) the sorted elements from the sequence of range
blocks (703, 704, 713, 714) sequentially with respect to their range to obtain the sorted
input data.

21

PCT/EP2014/061269

WO 2015/180793

1/11

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

| apou U

Aiowagy |n20q

F N

CPU

L

Intersocket
cannection

-

\

0 2pou
Arowayy pa07 \4/\

Fig. 1

WO 2015/180793 PCT/EP2014/061269
2/11

Core 2

Core 1

Register Register

CITT3 | I TT17
| Level1Cache | | Level1 Cache

| Level 2 Cache | | Level 2 Cache

Level 3 Cache

Main Memory

Core 3 Core 4

Register Register

T | LT
[LeveltCache \ |}| [Level1Cache ||.
— |

- \\ Level 2 Cache

| \ Level 2 Cache

207
203 208

Fig. 2

WO 2015/180793 PCT/EP2014/061269
3/11

Partition input data over _ .
asymmetric memory —2/ 301 ;

o

i | :
i] i
i _L Sort partition locally

: with any method _‘—2/ 302 :

| >

i] i
: I !
LL Extract and copy __ ;
| 303 |

results to ranges

g

: | .
i] i
LL Sort range locally _| i
: 7/ 304 ’

! with any method

Merge sorted ranges_‘l/ 305 i

Fig. 3

WO 2015/180793 PCT/EP2014/061269
4/11

1 /
2 6
3 5
4 4
5 3
6 2
/ 1

Fig. 4

PCT/EP2014/061269

WO 2015/180793

5/11

II

PCT/EP2014/061269

WO 2015/180793

6/11

303a

© © © <
o 1 I 1 I
N faV oVl faV —
7] + + + +
pv faV o faV —
+ + + +
m oV fa\ faV| -
O + + + +
m (o] [aV] (o] —
r o laV] < ©
& o oY} < ©
= o oV < ©
(@]) ol < ©
S
c Al < ©
] ! !
o — ™ To) N~
g @
=3
=2 0
-4 @) o — —
(7] — oVl ™ <
© gl go] ko] go]
© < © © ©
o o » o] o}
S e S e
=) e) e
(= [(= = (=

Fig. 6

PCT/EP2014/061269

WO 2015/180793

7/11

714

M~ —7

_7 _7 —

<

X
2w
< N

»\//

34—34

(SPERN I Nop)

7o

| O
w

12—12

12—1

III

D D

4

X

zZ

<C

(af)]
S

713

701

Fig. 7

PCT/EP2014/061269

WO 2015/180793

8/11

304

NODE 0

Fig. 8

PCT/EP2014/061269

WO 2015/180793

9/11

714

713

data

704

Fig. 9

WO 2015/180793 PCT/EP2014/061269
10/11

Calevdate pinemvborl

g Calculate unsorted —
results in a partition ’2/ 1001
Mﬂ‘fwwwmﬁ“ Sk ryarkibinnm loealby

Sort partition locally —"2/ 1002

L+

Exvtract and oo |

1 1
! 1
i !
i i
; |
1 1
! :
1 1
1 1
! !
| s
: i
1 1
! i
1 1
: :
! !
i i
i |
i i
i s Evtract and o | H
i Extract and copy — i
: !
! !
: |
1 1
’ !
! :
1 1
1 1
' :
! !
i :
1 1
! !
1 1
; |
1 1
i |
1 1

L+

O !

Sortrange locally —
with any method

L+

= Merge sorted ranges -‘2/ 1005

""" results to ranges —_Z/ 1003

Fig. 10

PCT/EP2014/061269

WO 2015/180793

11/11

1100

III

sorting
creating
copying
sorting
reading

Fig. 11

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2014/061269

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F7/32
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C.DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X EP 0 377 993 A2 (IBM [US]) 1-10,
18 July 1990 (1990-07-18) 12-15

Y abstract 11
page 4, line 23 - Tine 32

X US 6 427 148 B1 (COSSOCK DAVID [US]) 1-10,
30 July 2002 (2002-07-30) 12-15
cited in the application

Y column 3, Tine 36 - line 37; figures 11
1-3a,3d, 5c¢
column 6, line 28 - line 37

Y US 20107042624 Al (MIN HONG [US] ET AL) 11
18 February 2010 (2010-02-18)
paragraph [0018]

A US 2011/066806 Al (CHHUGANI JATIN [US] ET 12
AL) 17 March 2011 (2011-03-17)
paragraphs [0010], [0032], [0046]

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :
"A" document defining the general state of the art which is not considered
to be of particular relevance

earlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

U=

UKl

"O" document referring to an oral disclosure, use, exhibition or other

means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

o

"&" document member of the same patent family

Date of the actual completion of the international search

26 January 2015

Date of mailing of the international search report

13/02/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Verhoof, Paul

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2014/061269
Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0377993 A2 18-07-1990 EP 0377993 A2 18-07-1990
JP H02228730 A 11-09-1990
US 6427148 B1 30-07-2002 NONE
US 2010042624 Al 18-02-2010 NONE
US 2011066806 Al 17-03-2011 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Bibliography
	Abstract
	Description
	Claims
	Drawings
	Search-report

