United States Patent

US006978396B2

(12) (10) Patent No.: US 6,978,396 B2
Ruuth et al. 5) Date of Patent: Dec. 20, 2005
(54) METHOD AND SYSTEM FOR PROCESSING 5,799,322 A * 8/1998 Mosher, Jr. ..cccccuennene. 707/202
REPLICATED TRANSACTIONS PARALLEL 5,806,075 A * 9/1998 Jain et al. w..ccceuruuneene 707/201
IN SECONDARY SERVER 5,870,761 A * 2/1999 Demers et al. 707/201
6,065,018 A * 52000 Beier et al. wvvveeeen.... 707/202
(75) Inventors: Jarmo Ruuth, Espoo (FI); Jarmo 271421421’8431(1) 2 : 1?%888 imtfkl ‘:r ‘;’t Al e 70778
Parkkinen, Helsinki (FI); Petri Soini, C3ri6ed BL* 11 oo
. . . ,324, /2001 Wahl et al.
Vantaa (FI); Antoni Wolski, 6725242 B2* 4/2004 Gardner
Kirkkonummi (FT) 2002/0087501 A1* 7/2002 Breitbart etal.
. . . 2002/0116457 Al1* 8/2002 Eshleman et al. 709/203
(73) Assignee: Solid Information Technology Oy, 2002/0133507 Al* 9/2002 Holenstein et al. 707/200
Helsinki (FT) 2003/0217119 A1* 11/2003 Raman et al. 709/219
(*) Notice: Subject to any disclaimer, the term of this ~ cited by examiner
patent is extended or adjusted under 35 Primary Examiner—Scott Baderman
U.S.C. 154(b) by 595 days. Assistant Examiner—Paul Contino
(1) Appl. No.: 10/156,799 (74) Attorney, Agent, or Firm—Young & Thompson
ppl. No.: y
57 ABSTRACT
(22) Filed: May 30, 2002 67)
(65) Prior Publication Data This invention relates generally to database servers and
US 2003/0225760 Al Dec. 4. 2003 computer systems and, more particularly, describes the
v mechanism to run transaction operations originating from a
(51) Int. CL7 oo GO6F 11/00 primary server used to replica.te date} in parallel in a sec-
(52) US.Cl 714/6: 714/16; T07/202 ondary server. Especially the invention relates to running
S ’ ” concurrent or parallel operations in a secondary server for
(58) Field of Search 714/6, 16; 7077/33/28, redundancy, recovery and propagated transactions. This
invention describes how parallel operation in a secondary
(56) References Cited server .improves p.erformance and availability and how it
maintains transaction order and output congruent with the
U.S. PATENT DOCUMENTS primary server where transaction operations are originated.
5,452,445 A * 9/1995 Hallmark et al. 707/2
5,781,910 A * 7/1998 Gostanian et al. 707/201 30 Claims, 11 Drawing Sheets

10
~

r
PRIMARY

v 13 /’\K 1
tog | M —

>

OPERATIONS

20
id

SECONDARY

21 23

LOG

LG

U.S. Patent Dec. 20, 2005
10
~ 15
‘/\/
PRIMARY
OPERATIONS
13 11
/\/
LOG

L0
LG

FIG 1.

Sheet 1 of 11

20
id

SECONDARY

21

LOG

US 6,978,396 B2

23

U.S. Patent Dec. 20, 2005

Sheet 2 of 11 US 6,978,396 B2
time
TR A 1
TR B 1 3
TR C 1 4
TR D 1 2
TR E 3 6
TRF 1 5
FIG 2a.
200 220
I I
1ST TIMESTAMP 2ND TIMESTAMP
OF BEGINNING OF ENDING
TRANSACTION TRANSACTION
210
1L N~ 1 N 230
1. TS(A) =
: 2. TS(A) =
g'gﬁse(“ arl‘d d’.f‘tesAt) 1 + (highest and
: exciuding latest 2. TS(excluding A))

FIG 2b. FIG 2c.

U.S. Patent Dec. 20, 2005 Sheet 3 of 11 US 6,978,396 B2

30
/\/
TRANSACTION
FROM PRIMARY
TO PTE
Y
31
M 32
TRANSACTION(A) | YES L T5A)
ALLOWED TO = .
BEGIN 2. TS('e>.<clud|ng A)
visible
NO
34 33
4[\/
1, TS(A)
TRANSACTION(A) | YES <
~ | FORCED TO 2. TS(excluding A)
BEGIN
37
35 NO
v~ Tid
READY TO atan
COMMIT WAIT LOOP
36 38
/\/
2. TS(A)
> 2. TS{excluding A) + 1 S;/%TTMII_-(EOP
39
/\./
TRANSACTION(A)
* ALLOWED TO
COMMIT

FIG 3.

U.S. Patent Dec. 20, 2005 Sheet 4 of 11 US 6,978,396 B2

<t
™
N
& ~
<
()
=
°
(©]
L
(9)]
i
{} -
o [} []
2 i Q a
= E C) N ®
- =i
[V L
<
(ap]
< 40 semmmmcmmnccasbaccmccaaaaaaa.
= o
2
(o'

TR1 1
TR2
TR3

U.S. Patent Dec. 20, 2005 Sheet 5 of 11 US 6,978,396 B2

., 400
TRANSACTION TR1(P) BEGINS IN PRIMARY !
A
TRANSACTION BEGIN INFOMATION I 405
IS TRANSMITTED TO PTE

TIMESTAMP CRITERIA EVALUATION IN PTE PASSED: |ar 410
TRANSACTION TR1(S) BEGINS IN SECONDARY '

y

TRANSACTION TR1(P) ISSUES o 420
WRITE W1 IN PRIMARY
430
WRITE W1(P) TRANSMITTED TO PTE r
I 440
WRITE W1(S) EXECUTED IN SECONDARY

MORE WRITE YES

OPERATIONS?

TRANSACTION TR1(P) ISSUES COMMIT C1(P) v 460
IN PRIMARY

h 4

COMMIT C1(P) TRANSMITTED TO PTE o 470

TIMESTAMP CRITERIA EVALUATION IN PTE PASSED: | 480
COMMIT C1(S) OF TRANSACTION TR1(S) lhd
EXECUTED IN SECONDARY

FIG 4c.

US 6,978,396 B2

Sheet 6 of 11

Dec. 20, 2005

U.S. Patent

AYVYANOD3S TVNLYIA

"qg 914

d1d

0s

‘eg DId

d1d

F 3

0s

(d)zdl

(d)eylL

901

(d)1yl

edl

cdl

T 1Yl

U.S. Patent Dec. 20, 2005 Sheet 7 of 11 US 6,978,396 B2

. 500
TRANSACTION TR1(P) BEGINS IN PRIMARY
\ 4
TRANSACTION TR1(P) ISSUES COMMIT C1(P) |1, >10
IN PRIMARY
4
SERVER CRASHES AND IS RESTARTED % 520
AS RECOVERING SERVER
S 530
TRANSACTION TR1(P) IS READ /\/
FROM THE TRANSACTION LOG
540
TRANSACTION BEGIN IS TRANSMITTED TO PTE /\/
TIMESTAMP CRITERIA EVALUATION IN PTE PASSED: | s55q
TRANSACTION TR1(S) BEGINS I
IN RECOVERING SERVER
A\ 4
, 560
TRANSACTION'S WRITE OPERATIONS 1
ARE EXECUTED IN RECOVERING SERVER
y
TRANSACTION COMMIT C1(P) . 570
IS TRANSMITTED TO PTE
A
TIMESTAMP CRITERIA EVALUATION IN PTE PASSED: 580
TRANSACTION TR1(S) IS COMMITTED %
IN RECOVERING SERVER

FIG 5c.

U.S. Patent Dec. 20, 2005 Sheet 8 of 11 US 6,978,396 B2

590
WRITE AND COMMIT OPERATIONS d
IN RECOVERY LOG
y
. 591
START READING OPERATIONS
\4
READ NEXT WRITE OR COMMIT s 592
A 4
593
SEND OPERATION TO PTE %
A
OPERATION IS EXECUTED o 594
595
YES
MORE OPERATIONS?
596
END /\/

FIG 5d.

U.S. Patent Dec. 20, 2005 Sheet 9 of 11 US 6,978,396 B2

v
«
N
™
i
18]
l-—
)
<
= o
O
L
2 K
V8]
2| K
7'y -
m -
(o] e} = Q
> n ((»]
(G)] 1 »
=1 O
L -
118
" <
w —
)
20 0
<
o NN 2 OU S
- ~ P
[a T8
LS
o

TR1
TR2
TR3

U.S. Patent Dec. 20, 2005 Sheet 10 of 11 US 6,978,396 B2

600

TRANSACTION TR1(P) BEGINS IN FIRST DATABASE i

l

TRANSACTION TR1(P) ISSUES v 610
WRITE W1(P) IN FIRST DATABASE

WRITE OPERATIONS W1(P) EXECUTED v 620
IN FIRST DATABASE

!

TRANSACTION TR1(P) ISSUES COMMIT C1(P) 630
IN FIRST DATABASE

COMMIT C1(P) OF TRANSACTION TR1(P) 640
IS EXECUTED IN FIRST DATABASE i

Y

TRANSACTION TR1(P) TRANSMITTED TO PTE 4 650

TIMESTAMP CRITERIA PASSED: % 660
TRANSACTION TR1(S) BEGINS IN SECOND DATABASE

A

WRITE OPERATIONS W1(S) EXECUTED r 670
IN SECOND DATABASE

A

COMMIT C1(P) TRANSMITTED TO PTE s 680
TIMESTAMP CRITERIA PASSED: % 690
COMMIT C1(S) OF TRANSACTION TR1(S)

IS EXECUTED IN SECOND DATABASE

FIG 6c¢.

U.S. Patent Dec. 20, 2005 Sheet 11 of 11 US 6,978,396 B2

691
WRITE STATEMENTS i
FROM MULTIPLE TRANSACTIONS
J’ 693
/\/

SAVED STATEMENT TABLE (SST)

SAVED STATEMENTS FROM FIRST DATABASE |1/ 695
TO SECOND DATABASE

697
SEND SAVED STATEMENTS TO PTE N

699
SAVED STATEMENT IS EXECUTED '

FIG 6d.

US 6,978,396 B2

1

METHOD AND SYSTEM FOR PROCESSING
REPLICATED TRANSACTIONS PARALLEL
IN SECONDARY SERVER

TECHNICAL FIELD OF THE INVENTION

The present invention relates generally to database server
and computer systems and, more particularly, to run trans-
action operations in a fault tolerant system originating from
a primary server used to replicate data in parallel in a
secondary server. Especially the invention relates to running
parallel transactions in a secondary server for redundancy or
recovery purposes.

BACKGROUND OF THE INVENTION

Various mechanisms are known for replication or recov-
ery of data in a database server system to ensure correct
operation in the case of a crash of a system or a failure that
causes the system to be out of order for an undefined period
of time.

A Hot Standby (HS) is a mechanism which supports
non-disruptive failover of database server system maintain-
ing system availability, i.e. its ability to provide desired
service when required, by a second server system ready to
take over when the main system is unavailable. In the hot
standby replication scheme servers usually have two differ-
ent roles, the first of which is a primary server and the
second a secondary (backup, slave) server. The hot standby
configuration provides a way for a secondary database to
automatically maintain a mirror image of the primary data-
base. The secondary database on the secondary server is
usually of read-only type and it is logically identical to the
primary database on the primary server. In case a failure
occurs in the primary server, the secondary server can take
over and assume the role of a new primary server.

There are several methods for achieving high availability
in computer systems that contain databases. One known way
to carry out continuous hot standby is to mirror the entire
system, i.e. databases and the applications that use the
database. All operations of the system are performed on both
applications of the system. The applications write each
transaction to their respective databases so both systems are
completely synchronized at all times. To ensure that the
applications and their databases are mutually in synchroni-
zation, typically a mechanism called application checkpoint-
ing is used. After each executed operation, the application
ensures by some means that the other application has
executed the same operation. In other words, the secondary
database in association with the secondary application pre-
cisely mirrors the primary database and application. The
application level mirroring is a good choice for real-time
applications where everything, including the application
processes need to be fault tolerant. However, it requires lots
of work from the application programmers as the application
checkpointing mechanism is a difficult task to implement.

Another method for processing hot standby replication
operations is to create a transaction log of the operations of
a transaction run in the primary server, transfer the log to the
secondary server and run serially the transferred transaction
log on the secondary server. This log is a record of all data
items that have been inserted, deleted or updated as a result
of processing and manipulation of the data within the
transaction. The data needs to be written to both databases
before it can be committed in either of the databases. This
ensures that data is safely stored in the secondary server
before the primary server sends acknowledgement of suc-

10

15

20

25

30

35

40

45

50

55

60

65

2

cessful commit to the client application. An example of this
kind of data mirroring system is described in the U.S. Pat.
No. 6,324,654 where “A primary mirror daemon on a local
computer system monitors the writelog device (redundant
data storage or memory device) for data updates and feeds
the data over a network in the same order in which it is
stored to a receiving remote mirror daemon on a remote
computer system, which in turns commits the data updates
to a mirror device.” This document is here cited as a
reference for prior art [1]. In a situation of a failure recovery
these primary and secondary mirror daemons transfer the log
to the secondary node where the log is run just as it was in
the primary node. The replicated operations are run serially
in the secondary node which slows down processing speed
and hence reduces overall performance.

Still another mechanism for achieving database fault
tolerance is to have an application connect to two databases.
Whenever the application executes an application function,
it commits the related data changes to both servers. To
ensure that the transaction is committed in both databases,
the application typically needs to use so called two-phase
commit protocol to ensure the success of the transaction in
both databases. If the transaction fails in either of the
databases, it needs to fail also in the other databases. Using
two-phase commit protocol needs to be done in the appli-
cation which makes the application code more complex.
Moreover, distributed transactions are quite common cause
to performance problems as the transaction cannot be com-
pleted before both databases acknowledge the transaction
commit. In this scenario, recovery from error situations can
also be very difficult.

Still another way for processing hot standby replication
operations is to copy the transaction rows to the secondary
node after they have been committed on the primary node.
This method is a mere copying procedure where transactions
are run serially in the secondary node. This method is known
as asynchronous data replication. This method is not always
suitable for real-time database mirroring because all trans-
actions of the primary database may not yet be executed in
the secondary database when the fail-over from primary to
secondary happens.

Many database servers are able to execute concurrent
transactions in parallel in an efficient manner. For example,
the server may execute different transactions on different
processors of a multi-processor computer. This way, the
processing power of the database server can be scaled up by
adding processors to the computer. Moreover, parallel
execution of transactions avoid blocking effect of serially
executed long-running transactions such as creating an index
to a large table. To ensure integrity of the database, some
concurrency control method such as locking or data ver-
sioning needs to be used to manage access to data that is
shared between transactions. If two transactions try to have
write access to the same data item simultaneously and
versioning concurrency control is in use, the server either
returns a “concurrency conflict” error to one of the transac-
tions and the application needs to re-attempt executing the
transaction later. If locking concurrency control is in use, the
server makes one of the transactions wait until the locked
resources are released. However, in this scenario it is pos-
sible that a deadlock condition, where two transactions lock
resources from each other, occurs and one of the transactions
must be killed to clear the deadlock condition. The appli-
cation that tried to execute the killed transaction, must
handle the error e.g. by re-attempting execution of the
transaction.

US 6,978,396 B2

3

These concurrency control methods known in the prior art
are suitable for use in the primary server of the Hot Standby
database configuration to manage concurrent online trans-
actions of client applications but they cannot be applied in
the secondary server of the system. This is because the
concurrency conflict errors cannot be allowed in the sec-
ondary server as there is no way to properly handle these
error conditions. Because of the absence of a proper Hot
Standby concurrency control method, in the prior art repli-
cated hot standby operations are run substantially in a serial
form in the secondary node. Because operations cannot be
executed in parallel, it is difficult to improve secondary
server’s performance without raising problems in data integ-
rity and transaction consistency. Essentially, a mechanism is
needed that allows transactions to run parallel but that
ensures that transactions are not started too early and they
are committed before dependent transactions are started.

SUMMARY OF THE INVENTION

An object of the invention is to provide a method and
system for running replicated transactions parallel in a
secondary server originating from a primary server. More
precisely, the object of the invention is to identify which
transactions can be run concurrently in the secondary server
without a risk of a concurrency conflict error and the other
object is to guarantee that the transaction order and context
(output) maintain similar to the transactions of the primary
server. For these purposes a set of specific rules are intro-
duced to evaluate which ones of the plurality of transactions
can be run parallel securely. The rest of the transactions
which don’t meet the criteria may end in serial processing.
A point of the invention is to improve performance in
complex server systems compared to prior art of totally
serial transaction approach.

To fulfill the objects of the invention a set of specific rules
is determined. The specific rules are defined on basis of a
“first timestamp” and “second timestamp™ attached to each
transaction in the primary server and the rules form a
“timestamp criteria”. When a transaction meets this times-
tamp criteria it can be run in parallel with other transactions
met the same criteria in the secondary server in accordance
with the instructions set in the specific rules to maintain the
transaction order and output correct. The use of timestamp
criteria as an instrument of parallel transaction executor
(PTE) is explained more detail in section Detailed Descrip-
tion.

This invention is used in a database server system com-
prising a primary server, a secondary server and associated
database management system. It is also possible to use this
invention having multiple network connections between
primary and secondary servers. In multi-node configurations
each primary server can have multiple secondary servers.

A preferred embodiment of this invention is to run rep-
licated hot standby (HS) operations and transactions parallel
in a secondary server for redundancy. Another embodiment
of this invention is to execute transactions parallel from
recovery log file after a system crash. Still another embodi-
ment of this invention is to enhance performance of asyn-
chronous data replication process where a batch of transac-
tions that has been executed earlier in one database is to be
later executed in another database. This batch of transactions
is also known as propagated transactions.

A method for processing on at least one secondary server
a plurality of database transactions originating from at least
one primary server in a database system comprising steps, in
which first and second timestamps of each transaction of a

10

15

20

25

30

35

40

45

50

55

60

65

4

plurality of transactions originating from at least one pri-
mary server are evaluated according to specific rules, and in
pursuance of the evaluation according to the specific rules
the plurality of transactions originating from at least one
primary server are run parallel and/or serially on at least one
secondary server.

A database system, comprising at least one primary server
and at least one secondary server, characterized in that at
least one primary or secondary server is arranged to evaluate
a first and second timestamp attached to each transaction of
the plurality of transactions in the primary server and is
arranged to run according to said first and second timestamp
transactions parallel and/or serially on at least one secondary
server.

The advantage of the invention is to improve speed and
performance allowing parallel operations in hot standby,
recovery and propagated transactions. High performance is
needed in environments where large number of write opera-
tions are run each second and parallel processing power of
a multi-processing computer is needed to handle the trans-
action load. Parallel operation according to the invention
would not block all hot standby operations in a secondary
server in case of executing large operations like creating and
index for a large table. Hence, these improvements increase
system availability in database server environment.

The best mode of the invention is considered to execute
replicated hot standby transactions in the secondary server
of a hot standby server pair in a parallel fashion whenever
the transactions meet the timestamp-based criteria for par-
allel execution.

Some embodiments of the invention are described in the
dependent claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
of this invention will be apparent from the following more
particular description of the preferred embodiments of the
invention as illustrated in accompanying drawings.

FIG. 1. shows a block diagram of a hot standby replication
configuration.

FIG. 2a. shows a transaction scheme in a secondary server
on the basis of the specific rules according to the invention.

FIG. 2b. shows a flow diagram of determining the first
timestamp of a beginning transaction in the primary server
according to the invention.

FIG. 2¢. shows a flow diagram of determining the second
timestamp of an ending transaction in the primary server
according to the invention.

FIG. 3. shows a flow diagram of checking the specific
rules (timestamp criteria) for parallel operation in a second-
ary server according to the invention.

FIG. 4a. shows a block diagram of processing hot standby
transactions according to the invention.

FIG. 4b. shows a transaction scheme of processing hot
standby transactions according to the invention.

FIG. 4c¢. shows a flow diagram of a method for processing
a hot standby transaction according to the invention.

FIG. 5a. shows a block diagram of processing recovery
transactions according to the invention.

FIG. 5b. shows a transaction scheme of processing recov-
ery transactions according to the invention.

FIG. 5c. shows a flow diagram of a method for processing
a recovery transaction according to the invention.

FIG. 5d shows a flow diagram of steps during recovery
after a system crash according to the invention.

US 6,978,396 B2

5

FIG. 6a. shows a block diagram of processing earlier
created transactions according to the invention.

FIG. 6b. shows a transaction scheme of processing earlier
created transactions according to the invention.

FIG. 6c. shows a flow diagram of a method for processing
a earlier created transaction according to the invention.

FIG. 6d. shows a flow diagram of processing earlier
created transactions according to the invention.

DETAILED DESCRIPTION

The following notions are used in this application:

“Client application” is a software process that connects to
another software process such as database server application
via a network or other means of inter-process communica-
tion and uses services provided by the server application.

“Database server” is an entity, which comprises one or
more databases, whereby the server is responsible for read-
ing the data structures contained in the databases and/or data
management systems and for changing these data structures.

“Database” is an information structure, which comprises
one or more data elements, and the use of which is controlled
by the data management system. The invention is applicable
both in relational databases and in databases of other forms,
such as in object oriented databases.

“Database operation” is an event, during which data
elements are read from the database, during which data
elements of the database are modified, during which data
elements are removed from the database, and/or during
which data elements are added to the database. Database
operation can also be a call to a stored procedure or other
piece of program code that is run by the database server.

“Timestamp” refers to any mechanism which can be used
to put events in relative order. The timestamp value can for
example be the current time or it can be a value of a global
counter object that is incremented whenever an event that
requires a timestamp, occurs.

“Transaction” is a plurality of database operations acting
on the data elements. A transaction can also comprise further
transactions. Typically, transactions implement at least some
of the so called ACID (Atomic, Consistent, Isolated and
Durable) properties. Atomic property means that a transac-
tion is completed or terminated as a whole. A “commit”
operation signifies the successtul completion of a transaction
and a “rollback” operation signifies the termination of a
transaction. The isolation property hides the operations of an
ongoing transaction from other users of the database. The
consistency property ensures that during a transaction, the
application’s view to the entire database remains unchanged.
Commit makes all operations of the transaction durable and
visible to other users. Rollback cancels all operations of the
transaction so that no changes to the database are made by
the transaction.

As shown in FIG. 1 in the hot standby replication con-
figuration servers can have two different roles, the first of
which is a primary server 10 and the second a secondary
(backup, slave) server 20. In association with database
server applications are relevant databases, namely a primary
database 11 and a secondary database 21. The server appli-
cations also control the transaction log files 13, 23. Primary
server is the database server to which client applications
connect to execute read and write transactions. Secondary
server is a database server that communicates with the
primary server through at least one network connection or
other means of communication and that executes the trans-
actions that primary server sends to it. The server role can be
changed from primary to secondary and vice versa by using

10

15

20

25

30

35

40

45

50

55

60

65

6

special commands without shutting down either of the
servers. Typically, after a failure in the primary server, the
secondary server is instructed to become a new primary.
Parallel operations described in this document apply to
operations received through the operations arrow 15. Opera-
tions include e.g. “insert”, “update™, “delete” and “transac-

tion commit” operations.

It must be guaranteed that parallel operations and espe-
cially transaction commit operations in the secondary server
are executed in the same order as in the primary server. It
also must be guaranteed that operations in one transaction
are always in the same order in the secondary and primary
server. Commit operation also requires that all operations of
the transaction must be finished before the transaction is
committed and next operation in a new transaction is com-
menced. It also must be guaranteed that transaction does not
start before other preceding transactions that may have
modified data used by the transaction are committed.

FIG. 2a describes the transaction schedule in the second-
ary server allowing parallel operation according to the
invention. Each transaction (TR A, TR B, TR C, . . .) has
two numbers, one in front and one at the end of transaction.
These numbers are assigned to each transaction in the
primary server when the transaction is executed there. The
numbers are obtained from a global counter variable that the
database server maintains. Whenever the server performs a
commit operation, the counter value is incremented by a
non-zero value. The current value of the counter is also
assigned to the rows affected by the commit operation. The
number in front of transaction is assigned to the transaction
when the first operation of the transaction is executed. This
number is called the “read level” of the transaction. In other
words, read level is a number given to a transaction to
conclude when it was started. In a multi-versioning database
engine, the read level indicates, which rows are visible to the
queries of the transaction. Only those rows whose version
number is lower than the read level of the transaction, may
be returned in the result set of the query. The number is
proportional to other transactions i.e. the matter in question
is a proportional version number.

The number at the end of transaction is called the “commit
level” of the transaction, and it signifies the order in which
the transaction is committed.

These numbers that are assigned to each transaction in the
primary server are used to control parallel transaction pro-
cessing in the secondary server of the hot standby server
pair. The basic rule is that a commencing transaction that has
a certain read level may start only after transactions having
lower or equal commit levels have ended. As an example of
this, according to FIG. 2a transaction TR E with read level
3 cannot commence before transaction TR B that has com-
mit level 3 is ended. Transaction TR C is causing modifi-
cations and its commit level is 4, so it is a sign that all
modifications affecting transaction TR E of read level 3 have
been treated. So, a transaction may only begin when all the
data below its read level is “visible” to it, i.c. committed to
the database by the other transactions. In FIG. 24 transaction
TR A does not have any number at the end visible while
running concurrently with other transactions. TR A may
include large and long running operations like “create
index” operation and it would not block other hot standby
operations in the secondary server. It should be noticed that
the number line of commit levels is continuously increment-
ing by a non-zero number, such as one, in course of time
when operations are executed in the database. However, if a

US 6,978,396 B2

7

commit fails the number does not represent any committed
transaction. Thus the numbering for committed transactions
may contain holes.

FIGS. 2b and 2c¢ describe how a “first timestamp” and
“second timestamp” are determined by read and commit
levels of transactions in the primary server. As shown in
block 200 the first timestamp is related to the commencing
transaction and its read level. A first timestamp will be a read
level of an incipient transaction and it is determined to be the
highest AND latest commit level among other transactions.
As shown 1n block 220 the second timestamp is related to the
ending transaction and its commit level. A second timestamp
will be the commit level of an ending transaction and it is
determined to be the highest AND latest commit number
among other transactions incremented by a non-zero num-
ber, such as one. In this connection AND means logical
AND operand. As shown in block 210 the first timestamp of
transaction TR A (1. TS(A)) will be the highest and latest
second timestamp in a group of other transactions than TR
A. In this TS is the abbreviation of timestamp and TS(ex-
cluding A) refers to all other transactions than transaction
TR A which is referred by TS(A). Correspondingly, as
shown in block 230 the second timestamp of transaction TR
A (2. TS(A)) will be the highest and latest second timestamp
in a group of other transactions than TR A. Respectively, in
this TS is the abbreviation of timestamp and TS(excluding
A) refers to all other transactions than transaction TR A
which is referred by TS(A). A program object called parallel
transaction executor (PTE) has the main role to identify
which transactions can be run parallel in the secondary node.
PTE can be integrated into a database server application or
an application connected to it.

A flow diagram in FIG. 3 shows the method for checking
the “timestamp criteria” determined by the special rules
depending on the first and second timestamps. This process
is done for each transaction transmitted by the primary
server to the PTE as shown in step 30. After transactions are
transmitted from the primary to the parallel transaction
executor PTE the timestamp criteria they have to meet for
parallel operation are shown in steps 31, 33 and 36. As a
result of passing at least one of the timestamp criteria 31 or
33 and criteria 36, parallel operation in the secondary is
executed as shown in step 39. In case of not passing the
timestamp criteria said transaction remains in wait state as
shown by the wait processing loop in step 37 or in step 38.

Here are used foregoing markings, namely TS is the
abbreviation of timestamp, TS(excluding A) refers to times-
tamps of all other transactions than transaction A (TR A) and
timestamps of transaction A are referred by TS(A). In first
step 31 it is checked if the first timestamp of the beginning
transaction (1. TS(A)) is equal to or less than the highest
second timestamp of the committed transaction (2. TS(ex-
cluding A)). In other words the transactions can commence
when commit level equal to or higher than read level is
visible. In case the condition is fulfilled the transaction in
question is allowed to begin as shown in step 32. Eventually
the transaction will be ready to commit in step 35.

In second step 33 it is checked whether the first timestamp
of the beginning transaction (1. TS(A)) is less than the
second timestamp of the committed transaction (2. TS(ex-
cluding A)). In case of affirmative answer the transaction in
question is forced to begin as shown in step 34. This means
it is necessary to commence the transactions having lower
read level before committing higher commit level. Eventu-
ally the transaction will be ready to commit in step 35.

10

15

20

25

35

40

45

50

55

60

65

8

However, if neither condition 31 or 33 is fulfilled, the
transaction waits in the loop 37, and begins the evaluation
for the criteria 31 and 33 later.

Once the transaction has reached phase 35 and is ready to
commit, it will be compared with the third criterion in step
36. In step 36 it is checked whether the second timestamp of
the committing transaction (2. TS(A)) is equal to 1+the
greatest second timestamp of the committed transaction (2.
TS(excluding A)). Here we assume for simplicity that the
non-zero increment that is being used is one. In case this is
fulfilled the transaction in question is allowed to commit as
shown in step 39. If the criterion is not met, the transaction
enters a commit wait loop 38 and the criterion is re-
evaluated after some time. This means that the transactions
can commit when transactions having lower commit level
have committed. In other words a time-line of commit levels
is continuous and incrementing in numeric order as shown
in FIG. 2a.

FIGS. 4a, 4b and 4c illustrate hot standby replication
method and system according to one embodiment of the
invention. In connection with transactions and operations P
in parenthesis means primary server side and S secondary
server side. In FIG. 4g transactions TR1(P), TR2(P) and
TR3(P) are transmitted from the primary server to the
parallel transaction executor (PTE) 40 which centrally
handles transactions’ propagation to the secondary server.
PTE is a piece of software code which receives transactions
from the primary server (TR(P)) and transmits them to the
secondary server where transactions (TR(S)) are executed
according to the timestamp criteria concurrently and/or
sequentially as shown in FIG. 4b. FIG. 4b describes the
transaction schedule in the primary and secondary server for
running hot standby transactions in the secondary server
according to the invention. Each transaction of the two
groups TR1(P), TR2(P), TR3(P) and TRI(S), TR2(S),
TR3(S) has two numbers, one in front (1, 1, 2) and one at the
end (2, 3, 4) of transaction which numbers are attached to
each transaction in the primary server. These numbers are
used to control parallel transaction processing in the sec-
ondary server. According to FIG. 4b transactions TR1(S)and
TR2(S) are running concurrently in the secondary server
because they both have number 1 as read level. Transaction
TR1(S) commits first because its commit level is 1+1=2 (this
is defined in the primary as shown in box 230 in FIG. 2¢).
Transaction TR2(S) commits after TR1(S) because its com-
mit level is 1+2=3. Then transaction TR3(S) can commence
because its read level is 2 and transaction TR1(S) with
commit level 2 is visible. Moreover, TR3(S) must com-
mence before transaction TR2(S) that has commit level 3,
commits. This means that when transaction TR2(S) is caus-
ing modifications and its commit level 3 is visible, it is a sign
that all modifications affecting transactions of read level 2
have been processed.

FIG. 4c illustrates a flow diagram of one embodiment of
the invention when running one hot standby transaction in
the secondary. In step 400 transaction TR1(P) is beginning
in the primary server. In step 405 the transaction begin info
is sent to the parallel transaction executor (PTE). In step 410
first timestamp criteria is passed in the PTE and the trans-
action TR1(S) begins also in the secondary. In step 420 write
operation W1(P) is issued in the primary server and in step
430 write operation W1(P) is transmitted from the primary
node to the PTE. Write operation W1(S) is executed in the
secondary node according to step 440. Steps 420, 430 and
440 are repeated multiple times if there are multiple write
operations in one transaction as depicted in step 450. In next
step 460 transaction TR1(P) issues commit operation C1(P)

US 6,978,396 B2

9

in the primary node and it is transmitted to PTE according
to step 470. After this commit operation C1(S) of transaction
TRI(S) is executed in the secondary server as depicted in
step 480 when the second timestamp criteria evaluation in
PTE passes.

In FIG. 4c¢ the parallel transaction executor (PTE) accord-
ing to the invention applies to steps 410—450, 470 and 480
where concurrent transactions are active. Steps 400-480 can
also be executed simultaneously by multiple different ses-
sions if there are concurrent sessions active in the primary
server. Each session and steps in each session are executed
independently.

FIGS. 5a, 5b, 5¢ and 5d illustrate a method and system for
processing of recovery transactions according to the second
embodiment of the invention. During normal mode of opera-
tion, the server acts like a primary server. All transactions
that the server executes, are stored in a transaction log file
for later possible recovery. Every now and then the server
also creates a checkpoint that is a known consistent state of
the database. When recovering a database from a crash or
unsuccessful shutdown, the database server is re-started in a
recovery mode that is similar to the role of the secondary
server in the first embodiment of the invention. When the
database is opened, the database file contains data up to the
last successful checkpoint. All data that has been written to
the database after the checkpoint, needs to be recovered
from the transaction recovery log files. These files contain at
least all the committed transactions since the last successful
checkpoint. To perform the roll-forward recovery, the data-
base server reads transactions from the log and executes
them in the database.

To improve the performance of the roll-forward recovery
in a multiprocessor computer, the recovery transactions
should advantageously be executed in parallel whenever
possible. According to the present invention, parallel execu-
tion can be achieved using the Parallel Transaction Executor
that reads the transactions from the transaction log file and
determines the transaction execution schedule based on the
read and commit levels. In connection with transactions and
operations P in parenthesis means transactions written to the
log file 55 by the server that is operating on normal mode,
i.e. in similar manner than primary server operates in the hot
standby arrangement. S relates to a server that is operating
in the recovery mode in this embodiment, i.e. in similar
manner than secondary server operates in the hot standby
arrangement. In FIG. 5a transactions TR1(P), TR2(P) and
TR3(P), which are written to the recovery log file of the
primary server, are transmitted from the transaction log to
the parallel transaction executor (PTE) 50. Write and com-
mit operations from different transactions are intermixed in
the recovery log. PTE transmits transactions to the recov-
ering server where transactions (TRn(S)) are executed
according to the timestamp criteria concurrently and/or
sequentially as shown in FIG. 5b.

FIG. 5c¢ illustrates a flow diagram of the second embodi-
ment of the invention when writing one transaction to the
recovery log file 55. In step 500 transaction TR1(P) is
beginning in the server that’s operating in the normal mode.
In next step 510 transaction TR1(P) issues commit operation
C1(P) in the server. After this step, the server is killed and
re-started in recovery mode 520. Next in step 530 the
transaction is read from the recovery log, its begin infor-
mation is send to PTE 540 and its timestamps are checked
against the timestamp criteria 550: If there are no other
recovery transactions that need to commit before the trans-
action start, transaction TR1(S) begins in the recovering
server and write operations W1(S) are executed in the server

10

15

20

25

30

35

40

45

50

55

60

65

10

according to step 560. After this commit operation C1(S) of
transaction TR1(S) is read from the transaction log file,
transmitted to PTE in step 570 and executed in the recov-
ering server as depicted in step 580 after the second times-
tamp criteria evaluation passed.

FIG. 5d shows a flow diagram of steps during recovery
after a system crash according to FIG. 5a. In the beginning
write and commit operations from different transactions are
intermixed in the recovery log file as depicted in step 590.
These operations are initiated to be read from the transaction
log in step 591. Next write or commit operation is read from
the recovery log in step 592 and it is transmitted to the
parallel transaction executor (PTE) in step 593. In next step
594 said operation is executed. In case of multiple opera-
tions in the recovery log steps 592, 593 and 594 are repeated
multiple times as shown in loop step 595.

FIGS. 64, 6b, 6¢ and 6d illustrate a method and system for
executing a batch of earlier created transactions in a second
database according to the third embodiment of the invention.
The transactions are created and executed in a first database
in which they are also saved to a transaction queue for later,
deferred execution in a second database. The transactions
may be executed in the second database for example after a
period of time has passed or when an application of the first
database wants to send the transactions to the second data-
base for example as part of asynchronous data replication
process. The transactions of this batch may be for example
Intelligent Transactions [2]. In connection with transactions
and operations P in parenthesis means primary server side
(first database) and S relates to secondary server side (sec-
ond database) in this embodiment. In FIG. 6a transactions
TR1(P), TR2(P) and TR3(P) from the first server are trans-
mitted to the transaction queue that can be for example a
saved statements table (SST) 65, where write statements
from multiple transactions are stored. From SST transac-
tions are propagated to the parallel transaction executor
(PTE) 60 as a batch of transactions. PTE transmits transac-
tions to the second server where transactions (TR(S)) are
executed according to the timestamp criteria concurrently
and/or sequentially as shown in FIG. 6b. In this embodiment
parallel operations are used to execute replicated transac-
tions in the second server in ordinary fashion. According to
this embodiment the synchronization process can also pro-
ceed in parallel separately when one of the steps 32, 34, 36
illustrated in FIG. 3 (namely 32, 34 or 36 alone) or any
combination of them (32&34, 32&36, 34&36, 32&34&36)
is met.

FIG. 6c illustrates a flow diagram of the third embodiment
of the invention when executing a transaction in the second
server in a deferred manner. In step 600 transaction TR1(P)
begins in the first server. In step 610 transaction TR1(P)
issues write operation W1(P) in the first server and in next
step 620 write W1(P) is executed in the first server. Step 620
is repeated multiple times if there are multiple write state-
ments in a transaction. The statements are saved in to the
transaction queue, implemented here as a saved statements
table (SST) which can be understood as a transaction log. In
next step 630 transaction TR1(P) issues commit operation
C1(P) in the first server. After this commit operation C1(P)
of transaction TR1(P) is executed in the first server accord-
ing to step 640. Then at some later time, transaction TRIW1
(P) is transmitted to PTE according to step 650. Next in step
660 the first timestamp criteria for this transaction is evalu-
ated. If the criteria are met, transaction TR1(S) begins in the

US 6,978,396 B2

11

second server and write operations W1(S) are executed in
the second server according to step 670. In step 680 commit
operation C1(P) is transmitted from the first server to the
parallel transaction executor (PTE) unless it has been trans-
mitted there earlier, e.g. in the same network message with
one or multiple write operations. After this the second
timestamp criteria is evaluated. If the criteria are met,
commit operation C1(S) of transaction TR1(S) is executed
in the second server as depicted in step 690.

FIG. 6d shows a flow diagram of steps when saved
transactions are run in the second server as illustrated in
FIG. 6a. Write statements from multiple transactions as
shown in step 691 are stored to saved statements table (SST)
shown in step 693. Next transactions containing saved
statements are propagated from the first server to the second
server according to step 695. In next step 697 saved state-
ments are transmitted to the parallel transaction executor
(PTE) and in step 699 a saved statement is executed and
committed in the second server.

The described method and system of the invention is
independent of the communication technology and the cli-
ent/server or multi-database system. The primary database
server and secondary database server can be connected to
each other to communicate transactions by any known
suitable data transfer system such as cable, wireless, Internet
or other communication system or by any combination of
these when the connection is established. Parallel transac-
tion executor (PTE) is a program object which is integrated
into a database management system (DBMS) or an appli-
cation using it. The saved statements table (SST) is a table
managed by a database management system. The storage
medium for SST is a memory or a disk accessed by this
DBMS.

The invention is not only limited to transaction schedul-
ing. It is evident that the same inventive idea may be applied
in the parallel processing of database rows in a level lower
than transactional level.

A system according to the invention can be implemented
by a person skilled in the art with state of the art information
and communication technology components. A person
skilled in the art can implement the functions according to
the invention by arranging and programming such compo-
nents to realize the inventive functions.

For example, it is preferable to implement the invention
to work in a telecommunication system which is compliant
with, but is not limited to, at least one of the following:
TCP/IP, CDMA, GSM, HSCSD, GPRS, WCDMA, EDGE,
UMTS, Bluetooth, Teldesic, Iridium, Inmarsat, WLAN,
DIGI-TV and imode.

It is also preferable to use a standardized operating system
in the terminals and servers. The operating system of a
terminal can be, but is not limited to, for example Unix,
MS-Windows, EPOC, NT, MSCE, Linux, PalmOS, GEOS,
VxWorks, OSE, Solaris, HP-UX, AIX, WinCE, ITRON,
QNX and all upgrades of these.

While presently preferred embodiments of the invention
have been shown and described in particularity, those skilled
in the art will recognize that the invention is not limited to
the embodiments described herein. The invention may be
otherwise embodied within the spirit and scope of the idea
as set forth in the appended claims.

5

10

15

20

25

30

35

40

45

50

55

60

65

12
CITED DOCUMENT

[1] U.S. Pat. No. 6,324,654 “Computer Network Remote

Data Mirroring System”, Legato Systems, Inc.

[2] U.S. Pat. No. 6,144,941 “Intelligent Transaction”, Solid

Information Technology Oy

What is claimed is:

1. A method for processing on at least one secondary
server a plurality of database transactions originating from at
least one primary server in a database system, comprising
steps, in which

a first timestamp is attached to each transaction of the
plurality of transactions in the primary server in the
beginning of the transaction, and

a second timestamp is attached to each transaction of the
plurality of transactions in the primary server at the end
of the transaction, wherein

said second timestamp is a commit level of an ending
transaction and it is determined to be the highest AND
latest commit level among the plurality of transactions
incremented by a non-zero number,

first and second timestamps of each transaction of a
plurality of transactions originating from at least one
primary server are evaluated according to specific
rules, and

in pursuance of the evaluation according to the specific
rules the plurality of transactions originating from at
least one primary server are run parallel and/or serially
in at least one secondary server.

2. Amethod according to claim 1, wherein the plurality of
transactions originating from at least one primary seryer are
run parallel in at least one secondary server, when at least
one of the following conditional steps are valid;

a transaction is allowed to begin when its first timestamp
is equal to or less than the highest second timestamp of
committed transactions,

a transaction having a lower first timestamp is forced to
begin before a transaction having a higher second
timestamp is committed, and

a transaction is allowed to commit when all other trans-
actions having lower second timestamps are commit-
ted.

3. A method according to claim 1, wherein said first
timestamp is a read level of an incipient transaction and it is
determined to be the highest AND latest commit level
among the plurality of transactions.

4. A method according to claim 1, wherein said first
timestamp is a version number of an incipient transaction
and it is determined to be the highest AND latest commit
level among the plurality of transactions.

5. A method according to claim 2, wherein said transac-
tions comprise replicated hot standby operations.

6. A method according to claim 5, wherein multiple
different sessions are executed concurrently in the secondary
server when there are concurrent sessions active in a primary
server.

7. A method according to claim 6, wherein each session is
executed independently.

8. A method according to claim 1, wherein there are
multiple network connections between a primary server and
a secondary server.

9. A method according to claim 2, wherein said secondary
server is a recovering server that recovers transactions
written to a recovery log file earlier by a primary server.

10. A method according to claim 9, wherein write and
commit operations from different transactions are inter-
mixed in a recovery log file.

US 6,978,396 B2

13

11. A method according to claim 9, wherein a recovery
after a system crash comprises steps, in which

transaction log file is opened for read access,

next write or commit operation is read from the recovery

log file,

said write or commit operation is sent to a parallel

transaction executor, and

said operation is executed in the recovering server.

12. A method according to claim 2, wherein a primary
server and a secondary server are occasionally connected to
each other and said transaction is propagated to the second-
ary server asynchronously in a batch of transactions.

13. A method according to claim 12, wherein write
statements from multiple transactions are saved into a trans-
action queue.

14. Amethod according to claim 1, wherein running saved
transactions in a secondary server comprises steps, in which

saved transactions are propagated from primary server to

secondary server as a batch,

saved statements are sent to a parallel transaction execu-

tor, and

saved statement is executed in the secondary server.

15. A method according to claim 1, wherein the method is
compatible with at least one of the following communication
specifications: TCP/IP, CDMA, GSM, HSCSD, GPRS,
WCDMA, EDGE, UMTS, and WLAN.

16. A method according to claim 1, wherein the method is
compatible with an operating system and is used in at least
one terminal including an application, replica database of a
database system.

17. A method according to claim 1, wherein an operating
system is used in at least one server including an application
master database of a database system.

18. A database system, comprising at least one primary
server and at least one secondary server, wherein at least one
secondary server is arranged to evaluate a first and second
timestamp attached to each transaction of the plurality of
transactions in the primary server, said second timestamp is
a commit level of an ending transaction and it is determined
to be the highest AND latest commit level among the
plurality of transactions incremented by a non-zero number
and is arranged to run according to said first and second
timestamp transactions parallel and/or serially on at least
one secondary server.

19. A system according to claim 18, wherein the plurality
of transactions originating from at least one primary server
are run parallel in at least one secondary server when it is
arranged to fulfill all or some of the following conditions;

10

15

20

25

30

35

40

45

14

a transaction is allowed to begin when its first timestamp
is equal to or less than the highest second timestamp of
a committed transaction,

a transaction having a lower first timestamp is forced to
begin before a transaction having a higher second
timestamp is committed, and

a transaction is allowed to commit when all other trans-
actions having lower second timestamps are commit-
ted.

20. A system according to claim 18, wherein said first
timestamp is a read level of an incipient transaction and it is
determined to be the highest AND latest commit level
among the plurality of transactions.

21. A system according to claim 18, wherein said first
timestamp is a version number of an incipient transaction
and it is determined to be the highest AND latest commit
level among the plurality of transactions.

22. A system according to claim 18, wherein there are
multiple network connections between a primary server and
a secondary server.

23. A system according to claim 19, wherein said trans-
actions comprise replicated hot standby operations.

24. A system according to claim 19, wherein said sec-
ondary server is a recovering server that recovers transac-
tions written to a recovery log file earlier by a primary
server.

25. A system according to claim 19, wherein a primary
server and a secondary server are occasionally connected to
each other and said transaction is propagated to the second-
ary server asynchronously in a batch of transactions.

26. A system according to claim 19, wherein a program
object for parallel transaction execution (PTE) is integrated
in a database server or an application program.

27. A system according to claim 25, wherein a storage
medium for transaction queue is a memory or a disk.

28. A system according to claim 18, wherein the system
is compatible with at least one of the following communi-
cation specifications: TCP/IP, CDMA, GSM, HSCSD,
GPRS, WCDMA, EDGE, UMTS, and WLAN.

29. A system according to claim 18, wherein the system
is compatible with an operating system and is used in at least
one terminal including an application, replica database of
the database system.

30. A system according to claim 18, wherein an operating
system is used in at least one server including an application
master database of the database system.

#* #* #* #* #*

