a9 United States

US 20120215752A1

a2y Patent Application Publication (o) Pub. No.: US 2012/0215752 Al

Parkkinen et al.

43) Pub. Date: Aug. 23,2012

(54) INDEX FOR HYBRID DATABASE

(75) Inventors:

(73) Assignee:

(21) Appl. No.:

Jarmo Parkkinen, Helsinki (F1);
Vilho T. Raatikka, ESPOO (FI);
Jarmo K. Ruuth, ESPOO (FI);
Petri U. Soini, Vantaa (FI); Antoni
Wolski, Kirkkonummi (FI)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

13/360,886

(22) Filed: Jan. 30, 2012
(30) Foreign Application Priority Data
Feb. 18,2011 (EP) .ccvvevervececiencnee 11154977.0

Publication Classification

(51) Int.CL
GOGF 17/30 (2006.01)

(52) US.Cl wcoooooiooooeeoeeeeeee 707/705; 707/E17.005
(57) ABSTRACT

Providing an index for a database table that includes a first
portion of rows stored in a memory device and a second
portion of rows stored in a disk device. A request is received
relating to a specific row of the database table. An index that
includes entries for each row of the database table stored in
the memory device and entries for a subset of the rows of the
database table stored in the disk device is accessed. A con-
nection is made to the memory device if the specific row is
stored in the memory device, and a connection is made to the
disk device if the specific row is stored in the disk device. An
action related to the specific row is performed based on the
received request.

S1
RECEIVE REQUESTFOR |
ROW OF DATABASE TABLE

ACCESS HYBRID INDEX fsz
FOR DATABASE TABLE

DETERMINE FROM INDEX /83
WHERE ROW IS STORED

CONNECT TO CORRECT | 54
STORAGE DEVICE

PERFORMACTIONIN | _—°
RELATION TO ROW

Patent Application Publication

Aug. 23,2012 Sheet1 of 6

ENGINE
10—
Y
IN-MEMORY
DATA ACCESS
MODULE
14—"
b
A
MEMORY
16—

US 2012/0215752 Al
12
ON-DISK =
DATA ACCESS
MODULE
S 18
BUFFER —
POOL
MANAGER
A
20

US 2012/0215752 A1l

Aug. 23,2012 Sheet 2 of 6

Patent Application Publication

o€

N

N I/IA_;O._th:: :..yo._vwh ﬂomﬂnu_ﬁ_ﬂ |

S MOITRG

D> ZY XMOI> L md

se] qns e Jo ebed jooH

ONI/

sebed |ea)6o| Alowel-u|

g L HOINEL |
A

H
T o e o e v e o e e P — -
. \A\\ _
T4 | <MOI>DP '<MOI>PE '<MOI>LE |
§

el 12}

7

88

xopu| ey Aew)id plgAH

-

epou jee | 62 | ¥

e

g

sepou |ewislu|

ve

a
.

~

Patent Application Publication

Aug. 23,2012 Sheet 3 of 6
| START '
Y
18T KEY IN NODE = READ NEXTKEY IN |,
NEW & OLD KEY NODE AS NEW KEY
1
NEW KEY < YES | MORE KEYS INTHE [YES| SETKEYAS THE
SEARCH KEY? " NODE? g OLD KEY
NO l NO
L 4
NEW KEY =TO YES| NEWKEY REFERS |YES B
SEARCH KEY? | TOASUBTREE?
NO NOl
) A
NEW KEY > YE OLD KEY REFERS |YES.| SEARCH SUBTREE
SEARCH KEY? | TOASUBTREE? " WITH OLD KEY
NO NO¢ B
\ c l \ 4
NEW KEY REFERS |YE SEARCH SUBTREE FOUND ROW IN
TO A SUBTREE? i WITH NEW KEY " SUBTREE?
NO Cc A NOl YES
v l l C L 4
RETURN NULL (NO RETURN ROW RETURN ROW
ROW FOUND) FROM MEMORY FROM DISK PAGE
3
END

US 2012/0215752 A1l

Patent Application Publication Aug. 23, 2012 Sheet 4 of 6 US 2012/0215752 A1

START

v

TKEY =INSERT KEY
F;Y = PREVIOUS KEY IN NODE SMALLER THAN IKEY (OR NULLIF IKEY 1S THE SMALEST)

INKEY = NEXT KEY IN NODE (OR NULL IF IKEY IS THE BIGGEST), BIGGER OR EQUAL TO IKEY
|NKEY_SUBTREE = NEXT BIGGER KEY IN THE CURRENTjUBTREE (OR NULL IF IKEY IS THE BIGGEST)

—
NKEY = IKEY ?
1S PKEY —
S TKEY WITHIN | YES | INSERT IKEY N YES
U BTQE\E,,ROOT SUBTREE SET? INTO SUBTREE ¥ SUCCES:
NO
SPLIT SUBTREE ON
YES THE BIGGER
BIGGER KEY KEYAND INSERT
IN SUBTREE? THE NEW SUBTREE
NO ROCT KEY IN NODE
IS NKEY YES REPLACE
SUBTREE ROOT ':J';;‘E"E";?T"; SUBTREE ROOT
KEY? KEY WITH IKEY
NO
CREATE SUBTREE
IS IKEY WITHIN | YES | AND INSERT NEW
SUBTREE SET? SUBTREE ROOT
NO KEY WITH IKEY
U g p S
r v
INSERT IKEY INSERT IKEY TO ERROR: IKEY
INTO SUBTREE NODE AFTER PKEY EXISTS
Fig.4

Patent Application Publication Aug. 23, 2012 Sheet 5 of 6 US 2012/0215752 A1

START

Y

DKEY = DELETE KEY
FOUNDKEY = EXACT MATCH OR THE BIGGEST KEY IN NODE SMALLER THAN DKEY

|

REPLACE
FOUNDKEY = SDKEVWITHIN] vEs | EXSTSNEXT 1 yeg DKEY IN NODE
DKEY ? SUBTREE SET? BIGGER KEY IN WITH NEXT
: YES : SUBTREE? BIGGER
| NO NO NO KEY IN SUBTREE
X
DELETE DKEY
FROM NODE
R B ves A DELETE DKEY
SUBTREE SET? FROM SUBTREE
NO NO
—] SUCCESS?
A
ERROR: DKEY ‘ DELETE DKEY DELETE VES
NOT FOUND FROM NODE SUBTREE

END

Patent Application Publication Aug. 23, 2012 Sheet 6 of 6 US 2012/0215752 A1

RECEIVE REQUEST FOR f31
ROW OF DATABASE TABLE

|

ACCESS HYBRID INDEX /sz
FOR DATABASE TABLE

l

DETERMINE FROM INDEX | 53
WHERE ROW IS STORED

l

CONNECT TO CORRECT | 5%
STORAGE DEVICE

l

PERFORMACTIONIN | _—°
RELATION TO ROW

US 2012/0215752 Al

INDEX FOR HYBRID DATABASE

PRIORITY

[0001] The present application claims priority to European
Patent Application No. 11154977.0, filed on 18 Feb. 2011,
and all the benefits accruing therefrom under 35 U.S.C. §119,
the contents of which in its entirety are herein incorporated by
reference.

BACKGROUND

[0002] This invention relates generally to a database sys-
tem, and more particularly to accessing a database table
within a database system.

[0003] Database solutions that use disk storage are built on
a principle that all data is stored on a disk system, and that
parts of the data can be cached to computer memory for faster
performance. In-memory database solutions are built on a
principle that all of the data is stored on computer memory, to
ensure fast access to the data. In these solutions, the in-
memory data can often additionally be written or backed-up
to a disk for data persistency reasons. Typical database solu-
tions in the current marketplace use one of these two
approaches.

[0004] There are several mechanisms to improve database
response times such as the use of extensive buffer pooling
(caching), processing as much of the data in main memory as
possible, using regular disk-based algorithms, and/or making
the system less vulnerable to disk operations by using high
performance disks (such as solid state drives or “SSDs”).
Even though these mechanisms can improve performance,
they do not use leveraging algorithms that are optimized for
in-memory processing even when all the data is processed
in-memory. When processing data inside the main memory,
using memory-optimized algorithms can lead to a significant
improvement in performance. Buffer pooling mechanisms
enable moving of data between a buffer pool and a disk
transparently to an application, but the data in the buffer pool
cannot be processed using algorithms that are optimized for
in-memory usage because of a disk-optimized data layout, for
example.

[0005] There are also hybrid database solutions that include
both an in-memory database technology and disk database
technology. In these hybrid solutions, each database table is
defined either as in-memory table (m-table), or as an on-disk
database table (d-table), forcing the database users to choose
either of the two approaches for each table in the database
schema. The division is static; rows are not transferred from
the m-table to the d-table, and vice-versa, without explicitly
using a transaction to insert to one table and delete from the
other.

[0006] Inhybrid database products or architectures having
several database servers it is possible to programmatically (at
an application level) store some data into an in-memory data-
base server and other data in a disk-based server. Controlling
this data placement on the application level is, however,
extremely tedious and complicated and increases the vulner-
ability of the system and may compromise data integrity.
Additionally, a challenge with in-memory databases and
database tables is that when a database table grows large
enough, it cannot be stored in the in-memory database any
longer due to lack of available memory. In general, databases

Aug. 23,2012

tend to grow over time for multiple reasons, and in-memory
database tables have a hard limit in terms of the maximum
size of the available memory.

[0007] One solution for addressing this memory database
and database table growth problem is to use a hybrid database
table, where some of the rows are handled by way of the
in-memory database technology, and some of the rows are
handled by way of the disk database technology (i.e., similar
to a hybrid database solution, but within one table). A hybrid
table keeps all the data logically in the same database table,
but the data is physically divided between an in-memory part
(m-part), and a disk part (d-part). The paper “Hybrid In-
Memory and On-Disk Tables for Speeding-Up Table Access”
by Guisado-Gamez et. al, published in Database and Expert
Systems Applications, Lecture Notes in Computer Science,
2011, Volume 6261/2011, p. 231-240 describes such a hybrid
solution. One of the problems with contemporary hybrid
tables is the index structure for accessing the data, since
in-memory database tables typically have different index
structures than disk database tables.

BRIEF SUMMARY

[0008] Embodiments include a computer implemented
method and a computer program product for operating a
database system. A database table that includes a plurality of
rows is stored. A first portion of the rows are stored in a
memory device and a second portion of the rows are stored in
aremote disk device. A request relating to a specific row of the
database table is received. An index for the database table is
accessed by a computer. The index includes entries for each
row of the database table stored in the memory device and
entries for a subset of the rows of the database table stored in
the remote disk device. It is determined, by the computer, and
from the index whether the specific row is stored in the
memory device or the remote disk device. A connection is
made to the memory device in response to determining that
the specific row is stored in the memory device. A connection
is made to the remote device in response to determining that
the specific row is stored in the remote disk device. An action
related to the specific row is performed based on the received
request.

[0009] Another embodiment is a database system that
includes a processing engine, a memory device and a remote
disk device. The database system is configured to perform a
method that includes storing a database table that includes a
plurality of rows. A first portion of the rows are stored in a
memory device and a second portion of the rows are stored in
aremote disk device. A request relating to a specific row of the
database table is received. An index for the database table is
accessed by a computer. The index includes entries for each
row of the database table stored in the memory device and
entries for a subset of the rows of the database table stored in
the remote disk device. It is determined, by the computer,
from the index whether the specific row is stored in the
memory device or the remote disk device. A connection is
made to the memory device in response to determining that
the specific row is stored in the memory device. A connection
is made to the remote device in response to determining that
the specific row is stored in the disk device. An action related
to the specific row is performed based on the received request.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS
[0010] Embodiments of the present invention will now be
described, by way of example only, with reference to the
accompanying drawings, in which:

US 2012/0215752 Al

[0011] FIG. 1is a schematic diagram of a database system
in accordance with an embodiment;

[0012] FIG. 2 is a schematic diagram of an index for a
hybrid database table in accordance with an embodiment;
[0013] FIG. 3 is a flowchart of a search operation on the
hybrid index in accordance with an embodiment;

[0014] FIG. 4 is a flowchart of an insert operation on the
hybrid index in accordance with an embodiment;

[0015] FIG. 5 is a flowchart of a delete operation on the
hybrid index in accordance with an embodiment; and
[0016] FIG. 6 is a flowchart of a method of operating the
database system in accordance with an embodiment.

DETAILED DESCRIPTION

[0017] Embodiments of the present invention provide a
hybrid index structure that supports both in-memory and disk
based rows in the same relational database table. An embodi-
ment of the hybrid database table is implemented in two parts:
one located in memory, and the other on disk. An embodiment
provides a method of fast access to large volumes of data in a
hybrid database. A hybrid table is used, which includes both
in-memory, and disk rows. Rows of the hybrid table are
accessed through a hybrid index, which makes it possible to
access all the user data (stored in the rows) of the hybrid table
through the same index. An embodiment of the invention is a
new hybrid index type, where in-memory rows are indexed
densely, that is, every row is pointed to by one index entry per
index and the on-disk rows are indexed sparsely. Such an
indexing scheme has various advantages including that both
primary key indexes and secondary key indexes are sup-
ported, and that the hybrid index makes it possible to create a
consistent checkpoint of a hybrid table more efficiently than
if the table was indexed with both an in-memory index and
with a separate on-disk index due, for example, to the single
access to the table.

[0018] The hybrid table index structure described herein
combines the capabilities of both forms of storage (memory
and disk), ensuring fast access to in-memory data rows and
conserving memory for disk data rows. An index refers to a
search structure, such as B-tree, or some other tree-like struc-
ture. Indexes may have internal nodes and leaf nodes, or leaf
nodes only. Nodes including pointers to tuples (instances of
table rows) are referred to as leaf nodes. There must be at least
one index in which the order of keys corresponds to the
ordering of tuples that they refer to. Unlike d-table indexes,
in-memory database indexes are typically dense. That is, each
index key identifies a row while keys in a disk index address
the page where the row being searched is located. Thus, a
dense index can have tens of times more keys than a sparse
index for an equally large table.

[0019] Inanembodiment, a hybrid table is accessed by the
uniform index for all the data stored in the hybrid table. This
is a hybrid index. Since the hybrid index is persistently stored
in memory, it is a challenge to fit both table data, and all the
indexes into the available memory. It is not possible with a
dense index because of its extensive memory usage. A dense
index is, however, needed to satisfy strict performance expec-
tations of an in-memory database.

[0020] Incontemporary database systems that use a hybrid
table there is an additional data structure including informa-
tion about where different keys for the rows are stored,
whether they are stored in-memory or on-disk. Every opera-
tion on such a hybrid table first finds out where the data that is
needed is stored. Then, the data is accessed either through a
specific memory index or a specific disk index, or both. In the

Aug. 23,2012

end, data fetched via different indexes is merged. In contem-
porary system there are two different indexes, and two differ-
ent storages.

[0021] An embodiment of the present invention uses one
hybrid index containing all the data, and two storage devices.
There is no requirement to maintain any extra bookkeeping
about where key values are located in each of the storage
devices. The hybrid index is able to provide seamless access
to both the in-memory storage, and to the disk-based storage.
This is possible because the index isn’t dense (as in a tradi-
tional in-memory indexes) or sparse (as disk based indexes
often are) but both, depending on the data it is addressing. The
hybrid index handles rows on two granularity level based on
the location of rows. A dense index part is used for the in-
memory rows, and a sparse index is used for on-disk rows.
The Guisado-Gamez paper referred to above describes the
use of a separate layer above the traditional in-memory and
on-disk indexes. This solution uses two indexes, and provides
a separate layer to choose, on-the-fly, which one to use.
[0022] Anembodiment of the present invention uses a new
type of index that causes no overhead to in-memory row
searches, nor does it for on-disk row searches either. In con-
temporary systems, if every search required access to an
additional data structure, that data structure would soon
become a subject of concurrency conflicts that would need to
be handled with a concurrency-control mechanism, resulting
in additional overhead. Using a single access structure for
both storages also makes it possible to execute range queries
through the single data structure.

[0023] FIG. 1 shows a database system that can be used to
store a database table that comprises a plurality of rows in
accordance with an embodiment. The system includes a pro-
cessing engine 10, which is connected to an on-disk data
access module 12 and in-memory data access module 14. The
in-memory data access module 14 connects to a local
memory device 16, and the on-disk data access module 12
connects through a buffer pool manager 18 to a remote disk
20. A hybrid database table is implemented in two parts; one
located in the memory 16, and the other on the disk 20. The
system provides a method of fast access to bigger volumes of
data in a hybrid database.

[0024] Any access to the database table stored by the sys-
tem of FIG. 1 is managed by the engine 10, which will be
accessed by one or more applications that require access to
the data stored in the rows of the database table. Some of the
rows are stored in the local memory 16 and the remainder are
stored in the hard disk 20. The embodiment of the system
shown in FIG. 1 provides the advantages of the fast access to
the rows stored in the memory 16 with the advantage of the
size of the memory available from the disk 20, without cre-
ating limitations on the access and handling of the data stored
in the hybrid database table.

[0025] The hybrid storage of the database table provides
advantages over the extensive use of buffer pooling. The
embodiment of the system shown in FIG. 1 enables the use of
high-performance algorithms in main memory operations.
The system also has advantages over high performance disk
since it also enables the use of high-performance algorithms
in the main memory operations. The system further provides
advantages over controlling the storage mechanism at the
application level which therefore results in lower application
complexity and vulnerability to application errors. An
embodiment of the solution uses a hybrid table, which
includes both in-memory, and disk rows. Rows of a hybrid
table are accessed through a hybrid index, which makes it
possible to access all the user data (=rows) of the hybrid table
through the same index.

US 2012/0215752 Al

[0026] The database system shown in FIG. 1 uses a hybrid
index for accessing the database table stored within the data-
base, where in-memory rows are indexed densely (every row
is pointed to by one index entry per index) and where on-disk
rows are sparsely indexed. As a result of this indexing, both
primary key indexing, and secondary key indexing are sup-
ported. An additional advantage of the hybrid index is that it
makes it possible to create a consistent checkpoint of the
hybrid table more efficiently due to only a single access to the
table being required.

[0027] FIG. 2 shows an example of the hybrid index 22 in
accordance with an embodiment. The hybrid primary key
index for in-memory rows are identified as {31, 34, 40, 79},
and for disk rows are identified as {41,42,...,54,...,72,
..., 78}. Dotted boxes represent memory-resident logical
pages. A key 24 in the hybrid index 22 refers either to an
in-memory (m-key) row 26, or a subtree 28 (a disk page at its
simplest) including disk rows 30 (d-key). The index 22 is
made up of multiple leafnodes 23. Each leaf node 23 includes
asequence ofkeys 24, m-keys, and d-keys mixed all together,
in ascending order. Each subtree 28 is stored on disk 20, and
is pointed to by akey 24 in the leaf node 23, and is a container
for d-keys. D-keys are associated with areference to a page 32
where the corresponding d-row 30 is located. Subtrees 28 can
be used in various ways, for example, by creating a subtree 28
for d-keys that share the same leaf node 23. Alternatively, a
subtree 28 can contain d-keys whose values fall between two
consecutive keys 24 in a leaf node 23.

[0028] In an embodiment, a subtree 28 is composed of a
single disk page 32 if the number of d-keys is small. A subtree
28 composed of a single page 32 is called a root page of a
subtree 28. The subtree 28 shown in FIG. 2 is located on disk
20, although the pages 32 can be located temporarily in page
buffer pool 18. When new d-keys are inserted, and the root
page overflows, two new pages are created, and the keys 24
stored in the root page are distributed evenly between the two
other pages, now called leaf pages. Thus, a pointer to the root
page is still valid after the split, and all the d-keys are acces-
sible through the same pointer. In general, common b-tree
structures, and algorithms apply to the subtree 28.

[0029] Every m-key in every index 22 refers to exactly one
m-row 26. Thus, the number ofkeys 24 referring to an m-row
is the number of indexes in the table. On the other hand, the
number of d-keys is, at most, equal to the number of disk
pages 32. The sparse indexing of disk rows 30 keeps the index
size at a minimum, and makes it possible to fit the indexes of
very large tables in memory, assuming that the in-memory
row part is correctly sized.

[0030] The cost, in terms of processing load and time
required in an exemplary embodiment, for searching for an
in-memory row 26 is the same as in a traditional m-table.
Similarly, the cost of searching for a disk row 30 is the same
as in traditional d-table. Searching for a set of rows that
includes both in-memory and disk rows is no worse than
searching the same set of rows for aregular d-table. If the ratio
of in-memory rows is high, then the search is less expensive
than in a regular d-table. The cost of updates to the database
table is also efficient when compared to a non-hybrid table.
Updating an in-memory row 26 is equally expensive when
compared to an update in a regular m-table. Updating a disk
row 30 is as expensive as in a regular d-table. Updating a row
set that includes both in-memory and disk rows is no more
expensive when compared to a regular d-table.

[0031] In an embodiment, the in-memory part of the data-
base table includes a subset of all the rows of the table. The
m-part subset is selected based on selection rules specified by
the user. The selection unit is either page or row. Page granu-

Aug. 23,2012

larity is useful when selection of the m-part is based on a
continuous primary key value range. It also can be used as an
extensive buffer pool based on a LRU (least recently used)
algorithm or some other common page caching algorithm,
where some rows (pages) are in the m-part 14, some are in the
traditional buffer pool 18, and the rest are on disk 20. When
the selection unit is a row, the user has an almost endless
variety of possible selection rules. The rules could be, for
example, select rows, which have a key whose value belongs
to specified value range, are updated no more than three days
ago, are among 50,000 most recently used, or are among
10,000 most recently inserted. The engine 10 has a user
interface to allow the user for mechanism to insert selection
rules.

[0032] Embodiments of the hybrid database table and its
associated hybrid index support various user operations. The
most common index operations are inserting, deleting, and
searching a key from index. When data is moved from the
d-part 20 to the m-part 14, and vice versa, index operations
will be triggered. Index operations are described in more
detail below. Row management may be performed in various
ways depending on the database engine implementation.
[0033] In an embodiment, a user or an application can
search for a key in the database table via the hybrid index 22.
The engine 10 performs a defined algorithm to find the loca-
tion of the row in the database table that corresponds to the
requested key 24. If key 24 being sought is found within the
leaf node 23, then the engine 10 can return its address. Oth-
erwise the engine 10 continues the search in the subtree 28, if
such exists. A return of NULL is made if the matching key
cannot be found either in the leaf node or from the subtree 28.
The following pseudo-code defines an embodiment of a
search algorithm that can be used by the engine 10:

/* Initial state: a leaf node is found in which the lowest value key is
* less than or equal to the search key, and whose successor leaf node
* includes only keys greater than the search key
*/

/* Purpose: Search by key in the leaf node */

skey:=search key

n:=leaf node

new__key:=first key in n

previous_ key := new__key

while new__key<skey

loop
if next__key(new__key)=NULL
then /* search reached the last key of the leaf node */
break;
else
previous_ key := new_ key
new__key:=next_ key(new__key)
endif
end loop

/* Either there is an exact match or a value is possibly in the subtree.
* Return the row in memory, or search the subtree
*/
if new__key=skey
then /* found match either in memory or subtree */
if refers_ to_ subtree(new_ key)
then /* itis a subtree match */
return search__subtree(new__key)
else /* it is an in-memory match */
return addr_of(newkey)
endif
else
if new__key>skey
then /* found probably the low value of a subtree */
if refers__to__subtree(previous_ key)
then /* search continues in subtree */
return search__subtree(previous__key)

US 2012/0215752 Al

Aug. 23,2012

-continued -continued
else nkey := smallest key value in Inode not smaller than ikey or NULL if ikey
return NULL is biggest
endif nkey_ subtree := NULL /* smallest key value in subtree bigger than
else ikey */
if refers_ to_ subtree(new__key) ipos := get_ position(nkey) /* position of nkey, or if nkey is NULL, then
then /* search continues in subtree */ first position after pkey */
return search__subtree(new__key) if (nkey = ikey)
else then /* insert key already exists */
return NULL return ERROR
endif endif
endif if key__is_ subtree_ root_ key(pkey)
endif then /* the previous key is a d-part key */
ifkey_is_ within_subtree_ key_ set(ikey)
then /* Insert key belongs to the pre-defined d-key set
[0034] FIG. 3 is flowchart summarizing the operation of the * insert in subtree and leaf node doesn’t change

above pseudo-code. The flowchart can be better understood
with an example. Given a leaf node with the following keys
[34, 35, 36, 40, 52], where the keys all refer to in-memory
rows apart from the key 40 which refers to a subtree stored
on-disk. If the search key is 40, then this is the row that is
being sought. The process will start with the first key in the
index (34) and this will be set as the new and old key (old
key=previous key in the pseudo-code above). A check is then
made to see if the new key (34) is less than the search key (40).
At this point, this is true, so a check is made to see if there are
more keys in the leaf node and if there are the algorithm
moves onto the next key (35) adjusting the values for “old
key” and “new key”. This part of the algorithm will continue
to cycle until new key is set to 40. At this point, the check
“new key<search key” will not be true and the algorithm will
move to the box “new key=search key” and since this will be
true (both equal to 40), the process will continue to the box
“new key refers to a subtree?” In this example, this is true, as
the entry 40 in this leaf node of the hybrid index does indeed
refer to a subtree. The answer “yes” moves to the link “B”,
which leads to the box “search subtree with new key.” A check
is then made to see if the desired row has been found in the
subtree. If not, then the algorithm will move through the link
“C” to return a NULL. If the row has been found in the
subtree, then the process returns the desired row address from
the appropriate disk page and the method terminates. Differ-
ent situations regarding the leaf node keys will cause the
algorithm to operate in different ways, but always returning
the correctresult of either NULL or the in-memory or on-disk
address of the search key.

[0035] The following pseudo-code defines an embodiment
of an algorithm, embodied as a flowchart in FIG. 4, which can
be used by the engine 20 when a user or application is insert-
ing a new key into the database table being stored by the
database system.

/* Initial state: a leaf node is found where the smallest key is less than or
* equal to the search key, and whose successor leaf node includes only
* larger keys than the search key, or the successor does not exist. A
* position in the leaf node of the smallest key value bigger than the value

of the insert key is found.
*/

/* Purpose: insert a unique key, unless there exists one. To determine

whether the key is an m-key or d-key, a function

key_is_ within_ subtree_ key__set() is used, returning

TRUE if the insert key is a d-key.

Inode := leaf node

ikey := insert key value

pkey := biggest key value in Inode smaller than ikey or NULL if ikey is

smallest

*/
retcode := insert_to_ subtree(ikey)
if retcode = SUCCESS
then
return SUCCESS
else /* insert key already exists */
return ERROR
endif
else /* Insert key goes between two sets of d-keys get smallest
* subtree key bigger than ikey, or NULL if doesn’t exist */
nkey_ subtree =
current_subtree_ get_next_ bigger key(ikey)
if nkey__subtree != NULL
then /* ikey goes between two sub tree keys,
* add next bigger sub tree key to leaf node
*/
current__subtree__split(nkey__subtree)
return insert_ key to_ leaf node(nkey_ subtree)
/* insert nkey_ subtree to leaf node */
else /* it is an m-key: move bigger keys ‘right’, and
* insert ikey to leaf node
*/
return insert_ key_ to_ leaf node(ikey)
endif
endif
else /* the previous key is a an m-part key */
ifkey_is subtree_ root_key(nkey)
then /* the next key is a an d-part key */
if key__is_ within_subtree_ key_ set(ikey)
then /* nkey will be replaced by smaller ikey referring
to this subtree */
replace__subtree__root_key_in_ leaf node(nkey,

ikey)
return current_subtree__insert_ key(ikey)
else /* it is an m-key: move bigger keys ‘right’, and
* insert ikey to leaf node

*/
return insert_ key_ to_ leaf node(ikey)
endif
else /* no subtree existing */
if key__is_ within_subtree_ key_ set(ikey)
then /* create a subtree and insert first key to subtree */
create__subtree(ikey)
return insert_ to_ subtree(ikey)
else /* it is an m-key: move bigger keys ‘right’, and
* insert ikey to leaf node

*/
return insert_ key_ to_ leaf node(ikey)
endif
endif
endif
[0036] If the new key goes between two in-memory keys,

the insert is executed by inserting the new key into the leaf
node. If the previous key refers to a disk page, then the new
key may belong between two d-keys. For example, a leafnode
may include the following keys: [31, 34, 40, 41, 79] of which
41,42,...,52, ..., 78 are stored on a subtree on a disk. By
inserting a new m-row with key value 50, this causes the
addition of key 50, and a new key to the leaf node to point to

US 2012/0215752 Al

the subtree. As a result, the leaf node will includes keys [31,
34,40, 41,50,52, 79] of which 41 and 52 refer to the subtrees
including all the disk keys.

[0037] The following pseudo-code defines an embodiment
of an algorithm, embodied as a flowchart in FIG. 5, which can
be used by the engine 20 when a user or application deletes an
existing key from the database table being stored by the
database system.

/* Initial state: a leaf node is found whose smallest key is less than,
* or equal to the search key, and whose successor leaf node includes
* only larger keys than the search key, or the successor does not exist.
* Then find the position of the search key, or if it doesn’t exist, then the
* biggest key value smaller than the search key.
*/
Inode := leaf node
dkey := delete key value
found__key := exact match, or biggest key value in Inode smaller than
dkey
dpos := get_ position(found_ key) /* position of found_ key */
retcode := SUCCESS
if found__key = dkey /* delete key is an m-row key or root of a subtree */
then
if key_is_ within_subtree_ key_ set(dkey) /* root of a
subtree */
then /* get smallest subtree key, which is bigger than the
* dkey, or NULL if it doesn’t exist
*/
nkey_ subtree =
current__subtree_ get_ next_ bigger key(dkey)
if nkey_ subtree != NULL
then /* dkey will be replaced with nkey_ subtree
referring to subtree */
replace__subtree__root_key_ in_leaf node(dkey,
nkey__subtree)
return current_subtree_ return delete__key(dkey)
else /* dkey is the only key in subtree thus it is deleted
from Inode */
delete__key_ from_ leaf_ node(dkey)
/* the subtree would be empty therefore delete it */
return delete__current__subtree()
endif
else /* delete key, and shift other keys left */
return delete__key_ from_ leaf. node(dkey)
endif
else
if key__is_ within_subtree_ key_ set(found_ key)
then /*can be in the subtree*/
retcode := current_subtree_ return delete__key(dkey)
if retcode = SUCCESS
return SUCCESS
else
return ERROR /* dkey not found */

endif
else
return ERROR /* dkey not found */
endif
endif
[0038] Deleting a key in the hybrid index is done either on

disk or in memory, depending on the specific storage device
upon which the row resides. If a key is a root of a subtree,
(such as 41 in FIG. 1), it is replaced with a next bigger value
of the subtree, and deleted from the subtree. An in-memory
key will be searched and deleted as in pure m-table. If both
sibling keys refer to the disk 20, the larger key can be removed
from the leaf node in addition to the deleted key. If the deleted
key is stored on the disk 20, it is searched, and deleted on the
disk page. Any leaf node/disk page join (with its sibling) is
done according to common in-memory index/disk-based
b-tree algorithms, respectively.

Aug. 23,2012

[0039] FIG. 6 summarizes an embodiment of an overall
method of operating the database system, regardless of the
type of action being taken by a user or an application in
respect to a specific row of the table. The method is executed
by the processing engine either as a hardware process or as a
set of instructions from a computer program product on a
computer readable medium. The method includes, at block
S1, receiving a request relating to a specific row of the data-
basetable, and at block S2 accessing an index for the database
table, the index including, for rows of the database table
stored in the local memory device, entries for each row of the
database table stored in the local memory device, and for rows
of the database table stored in the remote disk device, entries
for only some of the rows of the database table stored in the
remote disk device.

[0040] Atblock S3, itis determined from the index whether
the specific row is stored in the local memory device or the
remote disk device. At block S4, a connection is made to the
local memory device or to the remote disk device according to
the prior determination, and at block S5, an action related to
the specified row is performed according to the received
request. The action could be a simple access, reading the data
present in the row, or could be a more complicated action such
as the deletion or amendment of an entry in the database.
[0041] As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in-
cluding firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod-
ule” or “system.” Furthermore, aspects of the present inven-
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav-
ing computer readable program code embodied thereon.
[0042] Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, or device, or any suitable com-
bination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

[0043] A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable

US 2012/0215752 Al

medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

[0044] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.
[0045] Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ-
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

[0046] Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro-
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra-
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com-
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

[0047] These computer program instructions may also be
stored in a computer readable medium that can direct a com-
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple-
ment the function/act specified in the flowchart and/or block
diagram block or blocks.

[0048] The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro-
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0049] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos-
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable

Aug. 23,2012

instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow-
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

[0050] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises™ and/
or “comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one more other features, integers, steps, opera-
tions, element components, and/or groups thereof.

[0051] The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

[0052] The flow diagrams depicted herein are just one
example. There may be many variations to this diagram or the
steps (or operations) described therein without departing
from the spirit of the invention. For instance, the steps may be
performed in a differing order or steps may be added, deleted
ormodified. All ofthese variations are considered a part of the
claimed invention.

[0053] While the preferred embodiment to the invention
had been described, it will be understood that those skilled in
the art, both now and in the future, may make various
improvements and enhancements which fall within the scope
of'the claims which follow. These claims should be construed
to maintain the proper protection for the invention first
described.

1. A computer implemented method for operating a data-
base system, the method comprising:

storing a database table comprising a plurality of rows, a
first portion of the rows stored in a memory device and a
second portion of the rows stored in a disk device;

receiving a request relating to a specific row of the database
table;

accessing, by a computer, an index for the database table,
the index comprising entries for each row of the database

US 2012/0215752 Al

table stored in the memory device and entries for a
subset of the rows of the database table stored in the disk
device;

determining, by the computer, from the index whether the
specific row is stored in the memory device or the disk
device;

connecting to the memory device responsive to determin-
ing that the specific row is stored in the memory device;

connecting to the disk device responsive to determining
that the specific row is stored in the disk device; and

performing an action related to the specific row, the action
responsive to the received request.

2. A method according to claim 1, wherein the index for the
database table comprises, for the rows of the database table
stored in the disk device, entries for specific disk pages of the
disk device, each disk page storing multiple rows of the
database table.

3. A method according to claim 1, further comprising stor-
ing one or more subtrees on the disk device, each subtree
including entries for specific disk pages of the disk device,
each disk page storing multiple rows of the database table,
wherein the index for the database table comprises, for the
rows of the database table stored in the disk device, entries for
specific subtrees.

4. A method according to claim 1, further comprising
dividing the database table between the memory device and
the disk device according to one or more user defined selec-
tion rules.

5. A method according to claim 1, wherein the index com-
prises a plurality of leaf nodes, each leaf node comprising a
plurality of entries for at least one of rows of the database
table stored in the memory device and rows of the database
table stored in the disk device.

6. A database system comprising:

a processing engine, a memory device and a disk device,
the database system configured to perform a method
comprising:

storing a database table comprising a plurality of rows, a
first portion of the rows stored in the memory device and
a second portion of the rows stored in the disk device;

receiving a request relating to a specific row of the database
table;

accessing an index for the database table, the index com-
prising entries for each row of the database table stored
in the memory device and entries for a subset of the rows
of the database table stored in the disk device;

determining from the index whether the specific row is
stored in the memory device or the disk device;

connecting to the memory device or the disk device accord-
ing to the prior determination; and

performing an action related to the specific row, the action
responsive to the received request.

7. A system according to claim 6, wherein the index for the
database table comprises, for the rows of the database table
stored in the disk device, entries for specific disk pages of the
disk device, each disk page storing multiple rows of the
database table.

8. A system according to claim 6, wherein the disk device
is arranged to store one or more subtrees, each subtree includ-
ing entries for specific disk pages of the disk device, each disk

Aug. 23,2012

page storing multiple rows of the database table, wherein the
index for the database table comprises, for the rows of the
database table stored in the disk device, entries for specific
subtrees.

9. A system according to claim 6, wherein the method
further comprises dividing the database table between the
memory device and the disk device according to one or more
user defined selection rules.

10. A system according to claim 6, wherein the index
comprises a plurality ofleafnodes, each leaf node comprising
a plurality of entries for at least one of rows of the database
table stored in a memory device and rows of the database table
stored in a disk device.

11. A computer program product for operating a database
system, the computer program product comprising:

a computer readable storage medium having computer
readable program code embodied therewith, the com-
puter readable program code comprising:

computer readable program code configured for:

storing a database table comprising a plurality of rows, a
first portion of the rows stored in a memory device and a
second portion of the rows stored in a disk device;

receiving a request relating to a specific row of the database
table;

accessing an index for the database table, the index com-
prising entries for each row of the database table stored
in the memory device and entries for a subset of the rows
of the database table stored in the disk device;

determining from the index whether the specific row is
stored in the memory device or the disk device;

connecting to the memory device responsive to determin-
ing that the specific row is stored in the memory device;

connecting to the disk device responsive to determining
that the specific row is stored in the disk device; and

performing an action related to the specific row, the action
responsive to the received request.

12. The computer program product according to claim 11,
wherein the index for the database table comprises, for the
rows of the database table stored in the disk device, entries for
specific disk pages of the disk device, each disk page storing
multiple rows of the database table.

13. The computer program product according to claim 11,
wherein the computer readable program code is further con-
figured for storing one or more subtrees on the disk device,
each subtree including entries for specific disk pages of the
disk device, each disk page storing multiple rows of the
database table, wherein the index for the database table com-
prises, for the rows of the database table stored in the disk
device, entries for specific subtrees.

14. The computer program product according to claim 11,
wherein the computer readable program code is further con-
figured for dividing the database table between the memory
device and the disk device according to one or more user
defined selection rules.

15. The computer program product according to claim 11,
wherein the index comprises a plurality of leaf nodes, each
leaf node comprising a plurality of entries for at least one of
rows of the database table stored in the memory device and
rows of the database table stored in the disk device.

sk sk sk sk sk

