

M. Malek et al. (Eds.): ISAS 2004, LNCS 3335, pp.175–189, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Rolling Upgrades for Continuous Services

Antoni Wolski and Kyösti Laiho

Solid Information Technology, Merimiehenkatu 36D,
FIN-00150 Helsinki, Finland

{antoni.wolski, kyosti.laiho}@solidtech.com

Abstract. With the advent of highly available systems, a new challenge has
appeared in the form of the requirement for rolling upgrade support. A rolling
upgrade is an upgrade of a software version, performed without a noticeable
down-time or other disruption of service. Highly available systems were origi-
nally conceived to cope with hardware and software failures. Upgrading the
software, while the same software is running, is a different matter and it is not
trivial, given possible complex dependencies among different software and data
entities. This paper addresses the needs for rolling upgradeability of various
levels of software running in high-availability (HA) frameworks like the Avail-
ability Management Framework (AMF) as specified by SA Forum. The mecha-
nism of a controlled switchover available in HA frameworks is beneficial for
rolling upgrades and allows for almost instantaneous replacement of a software
instance with a new version thereof. However, problems emerge when the new
version exposes dependencies on other upgrades. Such dependencies may result
from new or changed communications protocols, changed interfaces of other
entities or dependency on new data produced by another entity. The main con-
tribution of this paper is a method to capture the code, data and schema depend-
encies of a data-bound application system by way a directed graph called
Upgrade Food Chain (UFC). By using UFC, the correct upgrade order of vari-
ous entities may be established. Requirements and scenarios for upgrades of
different layers of software including applications, database schemata, DBMS
software and framework software are also separately discussed. The presented
methods and guidelines may be effectively used in designing HA systems capa-
ble of rolling upgrades.

1 Introduction

The concept of service continuity embraced in the goals of the Service Availability
Forum1 is based on the notion that very short breaks in operation of service-providing
applications are tolerable to a certain extent. This extent is specified using the avail-
ability measure A (percentage of the time a service is operational, as related to the
total time the service is supposed to be operational) and, possibly, a maximum dura-
tion of a break (equal to mean time to repair, MTTR) or a frequency of breaks (repre-
sented with mean time between failures, MTTF). The three quantities are bound
together with the formula:

1 www.saforum.org

176 A. Wolski and K. Laiho

%100•
+

=
MTTRMTBF

MTBF
A

In the view of high availability standards like those of SA Forum, the main culprits
preying on service continuity are failures—both of hardware and software. To deal
with them, the system embodies redundancy both in hardware and software, managed
by a high availability framework like AMF (Availability Management Framework)
[4] of SA Forum.

According to the SA Forum AIS (Application Interface Specification) model [1],
redundancy is maintained at the level of service units that may comprise of one or
more components. In the simplest redundancy model, called 2N, the two units, active
and standby make up a mated pair, and the redundant application components are
organized in pairs in the corresponding units. Should a failure occur, the failed active
(service) unit (hardware or software) is quickly replaced with a corresponding standby
(service) unit. This operation is called a failover. Switching of the roles of units may
be done also on request, in a no-failure situation, and this we will call a switchover.
Switchovers are useful in various maintenance situations as will be seen in the sequel.
Service continuity is preserved if, in the presence of failures, the required service
availability level is maintained. If a standby system fails, it is repaired and brought
back into synchrony with the active unit. Such a failure does not normally cause an
interruption to the service.

All systems face a need for component replacement and upgrades from time to
time. The need to facilitate software upgrades is demanding because a system with
continuous service uptime expectation can not be just stopped for maintenance and
upgrade. In order to provide service continuity, the hardware and software upgrades
have to be performed on a running system in such a way that the availability require-
ments are met. We will call such upgrades rolling upgrades.

The concept of the rolling upgrade incorporates the notion of using the standby
units present in a HA system and thus may be considered a special case of a dynamic
upgrade in general [11]. It should be noted, hover, that engaging standby units in the
upgrade process may temporarily jeopardize the availability level of the overall ser-
vice because it may happen that the standby unit may not be available for failover,
should this be needed. For this reason, we propose to use spare units, in place of
standby units, whenever the service availability in endangered. Spare units are units
that are not assigned any active or standby role. Such units are available in many HA
system platforms. The choice whether to use the spare unit or not depends on the
anticipated upgrade duration and the criticality of the component being upgraded. In
the update scenario examples presented below, we make some educated decisions
about using the spare units. In reality, such decisions have to be made on the basis of
more accurate information about the required availability level and the duration of the
upgrade.

Given the complexity of modern telecommunications systems where implementa-
tions are becoming increasingly software-driven, several interrelated software layers
have to be recognized. In this paper, we are concentrating on systems utilizing database-
centric applications, and thus the software layers considered for rolling upgrades are:

• Operating system and availability framework
• Database management system
• Database schema
• Database applications

 Rolling Upgrades for Continuous Services 177

The above layers are schematically shown in Fig. 1, together with the relevant
interfaces among them.

OS

Hardware

HA database

HA applications

OS interface

AMF interface

Database
interface

Goal: continuous service
at the application interface

User

AMF

schema

HA conf.
data

Fig. 1. Layers of software in an HA system

In Section 2, we survey the related work. In Section 3, the Upgrade Food Chain
diagram is introduced with the purpose of capturing upgrade dependencies. In Section
4, requirements and scenarios associated with upgrades at different software layers
are discussed. We conclude by summarizing the methods and guidelines produced.

2 Related Work

From the outset of uninterruptible systems, the needs for evolutionary changes, in a
running system, have been recognized [7]. Consequently, various methods of dynamic
(or live) upgrading (or updating) have been proposed (for review of early dynamic
upgrading systems, see [11]). Researchers strived for achieving automatic upgrading
systems and thus the proposed methods dealt with homogeneous components of low
granularity. The update granules were abstract data types in Argus [2], procedures in
PODUS [11] and tasks (or transactions) in Conic [7]. The emergence of well-defined
component-based frameworks, like CORBA, J2EE and .NET, has offered new op-
portunities because of the unified component management and a possibility to repre-
sent component metadata in a natural way. There are methods for dynamic upgrading
of CORBA components [14][8], Java RMI servers [12] and methods adaptable to
J2EE EJB components [3]. Following the generally perceived needs, OMG has started
an effort to produce the CORBA online upgrade specification [9], too.

178 A. Wolski and K. Laiho

Traditionally, the dynamic upgrades are expected to be unattented (i.e. automatic)
and safe [3], i.e. not disrupting other components of the system. When building such a
system, one has to answer two questions:

1) How to obtain and represent the necessary change and dependency information
(upgrade metadata)?

2) How to execute the upgrade?

It is easier to answer the latter question once there is a satisfactory answer to the
former one. Efforts have been made to extract the necessary metadata from the com-
ponent interface specifications [14]. However, as the authors of [11] point out: "[fully
automatic dynamic updating] cannot work properly if semantic information is needed
to perform any aspect of the updating". Consequently, human input is needed to pro-
vide some of the metadata. An example is the ENT model (ENT stands for: Exports,
Needs, Tags) [3] where the interface metadata is annotated with the changes in pro-
vided-requested relationships among components. Once the sufficient amount of
metadata is produced, it can be used in unattended upgrading.

Inter-component dependency diagrams were introduced in [7]. In our work, we go
further by introducing the Upgrade Food Chain (UFC) diagram that captures the ver-
sion-specific change information only. This does not mean that the full dependency
information is not needed: the change information is obtained by way of the differen-
tial analysis of the full dependency information.

A requirement for the component to be quiescent before it can be upgraded is often
presented [14]. However, we argue that, in the presence of an HA framework like
AMF, the components need not be necessary quiesced because they are not quiesced
when a failover happens.

Similarly, it is required that the internal state is passed over to the new version of
the component, to preserve the component correctness [11]. Our position is that we do
not have to take care of that because the inherent nature of an HA component incorpo-
rates the notion of preserving the state in the presence of failover (or switchover).
The means for achieving the preservation of state are application checkpoints [4] and
writing the state into an HA database [5].

We are not aware of any work related to dynamic upgrades in large and diversified
systems lacking a common component framework. In this work, we utilize the HA
characteristics of a system, to ease the implementation of dynamic upgrades.

3 Rolling Upgrades: Dependencies and Requirements

3.1 Dependency Types

A major problem in facilitating rolling upgrades is that components of a system are
interrelated. To picture the dependencies among system components, we choose to
represent three different types of software components: executable code (standalone
or library), data and metadata. Code represents independently startable applications
and subsystems, and libraries to which they are linked. Data represents application
data stored in a database or other persistent or run-time storage. Metadata means
database schema declarations, such as table/data structures and integrity rules. One
application version is typically bound to one version of schema, and may not work
properly with a changed schema.

 Rolling Upgrades for Continuous Services 179

We introduce the Upgrade Food Chain (UFC) diagram to picture the dependencies
among the software components discussed above. A possible UFC diagram may have
the form shown in Fig. 2.

Fig. 2. Example UFC (Upgrade Food Chain) diagram

Consider a situation where two applications, App1 and App2 are upgraded to version
x+1. App1 uses data stored in a new table A. It thus needs also an upgraded database
schema incorporating table A. The data in table A used by App1 is produced by the
upgraded App2. Additionally, App2 needs a new version of an ODBC driver to func-
tion properly. The dependencies shown in the diagram are upgrade dependencies.
Upgrade dependencies are special cases of inter-component function dependencies, as
explained below.

Definition: Function Dependency
A component A is said to be function-dependent on component B if it requires some
services or characteristics of component B to function properly.

If component A uses services of component B, it is said to be a consumer of
services produced by B. Function dependencies among components are usually static
and version-invariant. The reason is that, from the time of the component inception,
its purpose and nature implies the related function dependencies. For example, all
database-bound applications are function-dependent on the database schema, by
definition. Exceptions from this rule may happen if the functionality of a component
is changed significantly.

Knowledge of function dependencies is a sufficient, but not necessary, condition
for execution of a safe multicomponent upgrade. Given an existing version x and the
target version x+1, the necessary condition is the knowledge of version-specific func-
tion dependency, called upgrade dependency.

Definition: Upgrade Dependency
Assume we are upgrading components A and B from version x to x+1. Component A
is upgrade-dependent on component B if the upgraded component A requires the
functionality or characteristics increment, introduced in the upgrade of B, to function
properly.
 One can see that the purpose of upgrade dependability is to represent new
dependencies that are introduced with a new version. If the two components involved
are versioned in a different way, both new versions should be indicated in the depend-
ency. On the other hand, if the function dependency of one component on another has
not changed or is disappearing, with a given upgrade, it is not considered to be an
upgrade dependency.

App1 App2
Table A

data

Table A
schema

Table A
schema

ODBC
driver

180 A. Wolski and K. Laiho

Definition: Upgrade Food Chain (UFC) Diagram
Upgrade Food Chain diagram is a directed graph, with each nodes being an instance
of one of the three component types (code, data and metadata), and edges pointing to
upgrade-dependent components.

Intuitively, the components should be upgraded in the reverse order of directed
edges, starting from outmost components. All the components captured in a single
UFC are considered a part of an upgrade suite. Upgrading of components in an
upgrade suite has to be coordinated (ordered) so that the components can function
properly during the upgrade process.

3.2 Assumptions About the System

Upgrade Granularity. The upgrade granularity we consider for SA-aware software
is between (and including) the component and the service unit. A component is the
smallest entity recognized by the AMF and also a natural unit of software
development. A service unit (that comprises of components) is a unit of redundancy
and thus switchovers are performed at this level.

Because both the concepts are irrelevant at the level of the operating system and
the HA framework, the upgrade granularity for both is that a of a (cluster) node.

Distribution. An HA system is inherently distributed, not the least because of the
hardware redundancy. Besides, the AMF has been planned for multi-computer
clusters. Otherwise than assuming that components of one unit are co-located on the
same cluster node, we do not make any references to the distributed nature of the
system. We assume the function dependencies among components do not depend on
the fact whether the components are co-located on a node or not.

Upgrade Transparency. When switchovers happen, the related component network
addresses (service access points) change at each switchover. Upgrade transparency
means that the consumer of the service, that is not upgrade-dependent on the
upgraded service, should not be affected in any way by the upgrade. Because the
upgrades we discuss are based on switchovers, the means for achieving upgrade
transparency are the same as the means for achieving failure transparency, in an HA
system, and we do not discuss it any further.

3.3 Trivial Upgrade: Independent Component

If a component upgrade is not dependent on any other component upgrade, it can be
upgraded on its own because its upgrade suite does not comprise any other components.

To upgrade an independent component, a plain switchover may be applied. In this
case, the procedure is shown below, given Appa

n and Apps

n are application instances of
version n running as components in active and standby units, respectively.

To upgrade an independent code component App from version x to version x+1:

1) Stop the component Apps

x in the standby unit.
2) Install the new version of the component in the standby unit.
3) Restart the component as Apps

x+1.
4) Perform controlled switchover of units (Appa

x becomes Apps

x)
5) Stop Apps

x in the new standby unit.

 Rolling Upgrades for Continuous Services 181

6) Install the new version of the component in the standby unit.
7) Restart the component as Apps

x+1.
8) (Optional) Perform one more switchover if the original assignment of active and

standby units was a preferable one.

Requirements. After performing step 4, the instances Appa

x+1 and Apps

x have to
interwork as a mated pair. If the active/standby operation at the component level
involves communications between the active and standby component (e.g. to perform
application state checkpoints), care should be taken of the need of the new version
Appa

x+1 to be able to communicate with the old version Apps

x, and possibly vice versa.
If there is no intra-pair communications, e.g. if the component instances exchange
data via a database, this concern is irrelevant.

Note that between steps 2 and 7, the system is vulnerable because it is running in
stand-alone mode: there is no available standby component that can take over from a
failed active component. For this reason, special precautions have to be taken if the
period between steps 2 and 7 is protracted. Typically, you utilize a spare unit (hard-
ware or software) to do the installation if it requires more time. Spare units are units
that are not assigned any active or standby role.

3.4 Cycles in UFC

There may be a case as depicted in Fig.3. The two applications are dependent on data
produced by the other one. An example may be that App2 produces some statistical
data based on transaction data produced by App1. On the other hand, App1 is using
the statistical data to optimize its own operation.

App1
v.x+1

App2
v.x+1

Table A
data

Table B
data

Fig. 3. Example of a cyclic UFC diagram

App1
v.x+1

App2
v.x+1

Table A
data

Table B
data

Fig. 4. Introducing weak dependencies (dashed)

182 A. Wolski and K. Laiho

If the depicted dependencies are strong, i.e. an application cannot operate without the
data it is dependent on, we face a problem, because neither application will be able to
operate. Therefore, the cycle has to be broken during the implementation of the appli-
cation upgrade. One way is to implement the upgrade in such a way, that an applica-
tion may operate, in a limited way, although the new data is not available. In such a
case, the upgrade dependency between the application and the data is called a weak
upgrade dependency.

In Fig. 4, weak dependencies are introduced, allowing to upgrade the two applica-
tions in any order.

Requirements. If a UFC cycle is detected, it has to be broken up during the upgrade
implementation phase by introducing weak upgrade dependencies. Also, if there are
dependencies among components of the same unit, it is preferable to change the
dependencies to weak ones, because the actual order of setting the components to the
active state may be a priori unknown.

Introducing weak dependencies is preferable also otherwise, to ease or remove the
ordering requirements in the upgrade execution. There may be, however, some addi-
tional cost involved in making components weak-dependable on other components.

3.5 Acquiring and Using UFCs

The information captured in a UFC is mostly based on the incremental changes in the
application semantics. If there exists component function dependency information
captured in the component metadata similar to the ENT model in [3], the UFC may be
extracted automatically by way of differential analysis of the metadata (between the
current and the target version). In large diversified systems such metadata is not read-
ily available. Therefore we assume the information pertaining to UFCs have to be
acquired from the application developers when they are developing an upgrade. Once
UFCs are available they may be used in constructing upgrade scripts to be run on a
production system, or even used by an automatic upgrade facility. For this purpose,
UFC graphs may be converted to a computer-readable form, e.g. using XML.

3.6 Other Assumptions

In the following sections, when we discuss upgrade scenarios, we make certain
assumptions about the quality of upgrades:

• The upgraded software has been tested properly on a test system incorporating all
know dependencies.

• The upgrade procedures have been also tested on a test system or on spare units of
the production system.

• Because the process of generating UFCs from application semantics is human-
centered, and therefore error-prone, one must prepare for the worst and have a
backup plan for the situation where the upgrade (despite all proper preparations)
is not successful, and the system has be returned to the state, that existed before
the upgrade was started. We assume here that system backup images can be and
are taken before the start of the upgrade process and that the backup state can be
restored if needed.

 Rolling Upgrades for Continuous Services 183

4 Upgrade Scenarios

4.1 Operating System Upgrade

Operating system upgrade is slightly outside the scope of this paper, as the operating
system is, typically, independent of the HA software running in the system. However
the capability to perform the service unit switchovers may be utilized in OS upgrades,
too. Because installing of a new version of an operating system may be a time-con-
suming process, spare nodes should be used to perform the installation in the back-
ground, without jeopardizing availability of the currently running services. Once the
spare is upgraded, the standby node can be brought down and rapidly replaced with
the spare, reducing the period of vulnerability of the system.

Similarly to all other software, we assume the compatibility and operation of the
new version of the operating system has been tested on a separate test system.

Upgrade Scenario: Operating System

1) Install the operating system on a spare node
2) Install the HA framework, DBMS and applications if necessary.
3) Disconnect current standby node (i.e. the node running standby units) from the ac-

tive node (resulting in a temporary standalone operation).
4) Transfer the database of the standby node to the upgraded spare node.
5) Assign the spare node the role of new standby node. The old standby node

becomes a spare node.
6) The framework initializes the components and the active/standby operation resumes.

The active and standby databases become reconnected and resynchronized.
7) Perform a controlled switchover.
8) Repeat steps 1-7 starting with the new spare node and new standby node.

The above scenario should be repeated for all pairs, in a 2N+M redundant system,
where M is the number of spare nodes. If there are no spare nodes in a system, the
periods of standalone operation will be longer, as the operating system is being up-
graded on a standby node.

4.2 HA Framework Upgrade

An HA framework (like SA Forum's AMF) has interconnected instances running on
each node. The HA framework upgrades may be dependent on the system model
schema updates and new configuration files if they exist (see notes about monotonic
schema upgrades in the following subsection). Another difficulty is that all SA-aware
(meaning, in the SA Forum parlance, highly available) components are dependent on
the framework software because they are typically linked to the framework's libraries.
The UFC diagram for framework upgrade is shown in Fig. 5. Because the re-linking
the applications make take some considerable amount of time, using of spare nodes is
preferable, as in the previous case.

Upgrade Scenario: HA Framework
1) Perform the (monotonic) schema upgrade in the system model database to support

the HA framework upgrade (if applicable)
2) Upgrade the HA framework at the spare node.

184 A. Wolski and K. Laiho

3) Re-link other SA-aware subsystems and applications with the upgraded framework
libraries, at the spare node.

4) Disconnect current standby node (i.e. the node running standby units) from the ac-
tive node (resulting in a temporary standalone operation).

5) Transfer the database of the standby node to the upgraded spare node (if applica-
ble).

6) Assign the spare node to be a new standby node. The old standby node becomes a
spare node.

7) Perform a controlled switchover.
8) Repeat steps 2-7 starting with the new spare node and new standby node.

The above scenario should be repeated for all node pairs, in a 2N+M redundant
system, where M is the number of spare nodes.

Requirements. In order for the presented scenario to succeed, the HA framework
upgrade has to be engineered in such a way that the instances of the old version and
new version of the framework can coexist in the same system. Should this turn out
untrue, the rolling upgrade of the HA framework will be impossible, and closing
down of the whole system will be required.

4.3 DBMS Upgrade

An HA DBMS must be engineered in such a way that rolling upgrade of the DBMS
software is possible. Additionally, the involved dependencies and requirements have
to be taken into account. The dependencies related to the DBMS upgrade are shown

Applications

System
Model

AMF
libraries

AMF kernel

Fig. 5. UFC for HA Framework Upgrade

 Rolling Upgrades for Continuous Services 185

in Fig. 6. The weak dependency of applications on upgraded driver libraries (such as
ODBC) is explained in the way that the upgraded DBMS should be upward compati-
ble with respect to drivers: the drivers of the old version can be used with the
upgraded DBMS. Therefore, drivers may be upgraded at any later time (if a driver
upgrade exists). The fact that there is a dependency of applications on new drivers
may be explained by possible performance improvements in the drivers.

We assume that the database runs in the active/standby redundancy configuration.
Given the assumed short time of performing the upgrade, the scenario does nor em-
ploy the spare node.

Fig. 6. Dependencies of the DBMS Upgrade

A DBMS upgrade scenario may be very much vendor-specific. The scenario shown
below is supported in the Carrier Grade Option of the Solid Database Engine [13].

Upgrade Scenario: HA DBMS

1) Stop the standby DBMS server.
2) Upgrade the DBMS software at the standby node. This involves loading program

media, necessary settings and license files into installation directories.
3) Start the upgraded server in the standby mode, with optional conversion mode

enabled to convert the database to the format supported by the upgraded DBMS
(if applicable). Note: if there are applications that are directly linked to the
DBMS, they should be re-linked and restarted, too.

4) Reconnect the servers so they resume the active/standby operation. The necessary
database catchup (state resynchronization) is performed automatically.

5) Perform the controlled switchover. The active node runs now the new version.
6) Stop the DBMS server running at the new standby node.
7) Install DBMS at the new standby node.

Applications

Driver libs

DBMS

Settings,
licences

186 A. Wolski and K. Laiho

8) Start the upgraded server at the new standby node, with the optional conversion
mode enabled to convert the database to the format supported by the upgraded
DBMS (if applicable). Note: if there are applications that are directly linked to the
DBMS, they should be re-linked and restarted, too.

9) Reconnect the servers so they resume the active/standby operation, although in
the reverse active/standby node configuration. The necessary database catchup is
performed automatically.

10) Perform the controlled switchover if the starting active/standby node configura-
tion was the preferable one

Requirements. The crucial characteristics of a DBMS that is needed here is the capa-
bility of the new version to maintain the data replication stream with the old version.
The minimum requirement is that the upgraded version may take up the standby role
while the old version is running as an active. In order to make the upgrade painless for
the applications, the new DBMS version must be totally upward compatible with the
old one: there should be no change in the old functionality, although new functional-
ity may be added. Also, assuming that there are a set of applications (on other nodes
of the system) that should be able to use both older version and the newer version of
the database (before and after the switchover), then the newer version of the database
server needs to be compatible with the older version of the client API - such as ODBC
and JDBC.

4.4 Schema Upgrade

Application upgrades are often dependent on schema upgrades as the new application
functionality requires an enhanced data model. Thus, schema upgrades have to be
installed before any depending application upgrades. The problem of schema up-
grades (or, schema evolution) in production systems has been a recognized issue [10].
Typically, the objective of schema evolution is to satisfy the needs of new applica-
tions or application updates without jeopardizing the pre-existing applications.

In an HA environment, schema updates have to be performed on a live database,
while the applications are running, because bringing the database totally off-line
would endanger the overall availability goal. Fortunately, contemporary relational
database systems typically support dynamic schema changes. Tables and columns
may be added and dropped, referential integrity constraints may be redefined, etc. In
an active/standby database pair, the schema changes have to be propagated from the
active to the standby database.

Another problem is how to ensure that schema upgrade does not invalidate running
applications. To do this, stringent limitations have to be enforced over schema up-
grade design and application development. A schema upgrade that is upward com-
patible with the existing applications (with certain assumptions) is called a monotonic
schema upgrade.

Definition: Monotonic Schema Upgrade
A schema upgrade is monotonic if and only if:

i. None of the first-class objects2 is removed or renamed.
ii. None of the existing columns is removed or renamed

2 First-class objects (in a relational database) are named schema objects created with the SQL

CREATE statement, such as tables, views, constraints, triggers, etc.

 Rolling Upgrades for Continuous Services 187

iii. None of the existing integrity constraints is changed
iv. None of the existing active objects (stored procedures, triggers and events) is

redefined

One can see, that a monotonic schema upgrade is, essentially, a schema extension.
Objects like tables, views and triggers, table columns and related constraints may be
added.

The fact that a schema upgrade is monotonic is not a sufficient guarantee that run-
ning applications are not invalidated with the upgrade. The applications themselves
have to be built following the schema-upgrade-safe rules.

Rules for Schema-Upgrade-Safe Application Development
An application is unaffected by a monotonic schema upgrade if

i. It does not take advantage of any implicit column ordering.
ii. It does not take advantage of table dimensionality (number of columns).

iii. Its error processing (especially of DELETE statements) anticipate possible
referential enhancements.

The effect of (i) and (ii) is that statements like SELECT *, and INSERT without
explicit columns names, are forbidden. The reason for (iii) is that, as new tables may
be associated with existing tables as referencing tables (having foreign keys pointing
to existing tables), referential integrity violations may emerge. For example a
DELETE statement on an existing table may produce a referential integrity error if
there are dependent rows in a referencing table. Normal defensive programming
(anticipating errors wherever errors are theoretically possible) will suffice. Addition-
ally, new integrity rules may be added to the new foreign key definitions, like … ON
DELETE CASCADE to guarantee that no new referential integrity errors emerge.

Given that the schema upgrade is monotonic and the application are built following
the rules for schema-upgrade-safe development, rolling schema upgrades should be
possible.

The monotonic schema upgrade should satisfy most needs of the normal applica-
tion life cycle. Should there be a need for a non-monotonic upgrade involving
renaming and changing of the schema semantics, a more careful approach is needed.
In such a case, applications have to be scanned for possible change dependencies and
reprogrammed accordingly, before the schema upgrade is applied.

The schema upgrade scenario may depend on the HA DBMS implementation used.
If an active/standby HA DBMS is capable of propagating the schema changes, as well
as data, from the active to the standby database (as does the Solid CarrierGrade
Option of the Solid Database Engine), then the upgrade scenario is trivial.

Upgrade Scenario: Schema Upgrade

1) Apply the schema upgrade, dynamically, to the active database. The schema
changes are automatically propagated to the standby database.

After creating the new schema elements, such as tables and columns, these are
unpopulated (empty). It is often the case that portions of the existing data need to be
migrated to the new schema, or that the new schema elements will need some default
values or other seed data. Assuming that the applications are developed in a schema-
upgrade-safe fashion, e.g. the existing applications can continue using the changed

188 A. Wolski and K. Laiho

database schema, the data migration and the new schema population can be applied to
the operational active/standby database without causing downtime to service. For
example, in the case of Solid Database Engine Carrier Grade Option, data migration
tasks would be executed against the active database, and automatically synchronized
to the standby, after which the schema upgrade is complete, and both database nodes
are ready for use (for the new database client application versions). Note: in the case
of large data migration requirements, the data migration itself may have a perform-
ance effect and lead to temporary service level degradation. This needs to be taken
into account and tested properly when designing the rolling upgrade process.

After the schema upgrade is performed, next come the dependent application
upgrades.

4.5 Application Upgrade

Because of possible dependencies, application upgrades should be carefully planned.
As some applications may be producers and the other consumers of data, UFC dia-
grams may useful to capture the dependencies of the type shown in Fig. 2 and Fig.3.
The cyclic dependencies have to be discovered early in the upgrade development
cycle to allow for reprogramming the applications and introducing weak dependen-
cies. Some of the weak dependencies may be then broken in the UFC graph, allowing
for an acyclic graph. An acyclic UFC graph indicates the correct upgrade installation
sequence, starting from the outer (leaf) nodes. Note that the ordering of the upgrade is
that of partial ordering: any pair of mutually independent upgrades may be installed in
any order. If several mutually independent or weakly dependent upgrades are com-
prised in a single service unit of a HA system, they may be installed in the same
installation step. The UFC diagram may be then organized into a set of partially
ordered upgrade steps

A single step of application upgrades is performed using the controlled switchover:

Upgrade Scenario: Application Upgrade

i. In a standby service unit of the system, stop the applications awaiting the upgrade.
ii. Install and start the upgraded applications in the standby mode.

iii. Perform a controlled switchover.
iv. Perform steps 1-3 in the new standby unit

Once an installation step is executed, the dependent upgrade steps may be
performed. Throughout the time of the upgrade procedure, the applications are
continuously available, with the exception of short breaks during switchovers. This
way, the goal of providing continuous services is achieved in the presence of system
upgrades.

4.6 Other Application System Architectures

In the presentation, we have mostly assumed two-tier (client/server) application
architectures. In reality, more complex architectures may be used, including transac-
tion processors, application servers and messaging frameworks like Web Services. In
those architectures, the principles of the UFC diagram creation and usage remain the
same although new component types may emerge in analysis.

 Rolling Upgrades for Continuous Services 189

5 Conclusions

Performing rolling upgrades on a continuously operating HA system is a demanding
task. It can be successfully performed given proper methods and technologies are
used. The prerequisites for a successful rolling upgrade at any level of the system are:

1) Finding out upgrade dependencies and capturing them with, for example, Upgrade
Food Chain (UFC) diagrams.

2) Programming the upgrades in a way that allows for existence of weak depend-
encies and satisfies the rules of schema-upgrade-safe application development.

3) Assuring monotonic schema upgrades.
4) Using an HA DBMS that supports dynamic and uninterruptible schema update.
5) Using an HA DBMS capable of rolling upgrade of the DBMS software.
6) Using a HA framework software capable of doing a rolling upgrade of its own.

There are also several unresolved issues that require further study. Among them
are: analysis of the performance impact of rolling upgrades, dealing with ad-hoc
environments that do guarantee neither monotonic schema upgrades nor upgrade-safe
applications, and satisfying the need to have a possibility to downgrade as well.

References

1. Application Interface Specification, SAI-AIS-A.01.01, April 2003. Service Availability
Forum, available at www.saforum.org.

2. Bloom, T., Day, M.: Reconfiguration and module replacement in Argus: theory and prac-
tice. Software Engineering Journal, March 1993, pp. 102-108.

3. Brada, P.: Metadata Support for Safe Component Upgrades. COMPSAC 2002: 1017-1021.
4. Brossier, S., Herrmann, F., Shokri, E.: On the Use of the SA Forum Checkpoint and AMF

Services. ISAS 2004, May 13-14, 2004 Munich, Germany.
5. Drake, S., Hu, W., McInnis, D.M., Sköld, M., Srivastava, A., Thalmann, L., Tikkanen, M.,

Torbjørnsen, Ø.,Wolski. A.: Architecture of Highly Available Databases. ISAS 2004, May
13-14, 2004 Munich, Germany.

6. Jokiaho, T., Herrmann, F., Penkler, D., Moser, L.: The Service Availability Forum
Application Interface Specification. The RTC Magazine, June 2003, pp. 52-58.

7. Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change Manage-
ment. IEEE Trans. Software Engineering 18(11), pp. 1293-1306 (November 1990).

8. Van de Laar, F., Chaudron, M.R.V.: A Dynamic Upgrade Mechanism Based on Pub-
lish/Subscribe Interaction. COMPSAC 2002, pp. 1034-1037.

9. Moser. L.E., Melliar-Smith, P.M., Tewksbury, L.A.: Online Upgrades Become Standard.
COMPSAC 2002, pp. 982-988.

10. Roddick. J.F.: Schema Evolution in Database Systems - An Annotated Bibliography.
SIGMOD Record 21(4), pp. 35-40 (1992).

11. Segal M., Frieder O.: On-the-fly Program Modification: Systems for Dynamic Upgrading.
IEEE Software, March 1993, pp. 53-65.

12. Solarski, M., Hein Meling, H.: Towards Upgrading Actively Replicated Servers On-the-
Fly. COMPSAC 2002, pp. 1038-1046.

13. Solid High Availability User Guide, Version 4.1, Solid Information Technology, February
2004, available at http://www.solidtech.com.

14. Tewksbury, L.A., Moser, L.E., Melliar-Smith, P.M.: Live Upgrades of CORBA Applica-
tions Using Object Replication. ICSM 2001, pp. 488.

