
International Workshop on Self-Managing Database Systems (SMDB2005),
April 8-9, 2005, Tokyo, Japan.

A Self-Managing High-Availability Database: Industrial Case Study

Antoni Wolski
Solid Information Technology

Béla Hofhauser
Fujitsu Siemens Computers

Abstract

While it is obvious that a highly available data-
base requires some degree of self-management, it is
not clear to what extend and how the responsibilities
should be divided among the DBMS, the
surrounding HA framework or even applications. We
start with analyzing expectations of an HA database
in a telecom setup. We check how the expectations
are met in a commercial implementation of a
telecom platform. We analyze the way of allocating
various HA responsibilities to different parts of the
system. We end up with a reference division of self-
managing responsibilities in an HA DBMS and the
surrounding HA framework.

1. Introduction

The way high-availability (HA) systems deal with
failures is that failures are allowed, but the concept
of service continuity is embraced. It is based on the
notion that very short breaks in operation of service-
providing applications are tolerable to a certain ex-
tent. For example, on these premises, the Service
Availability Forum (SA Forum)1 is producing API
specifications for the use by manufacturers of high-
availability frameworks that are being delivered to
the telecom field as components of telecom plat-
forms. To say to what extent failures are tolerable,
one may use the measure of availability A. It is ex-
pressed as the percentage of the time a service is
operational, as related to the total time the service is
supposed to be operational. Other important meas-
ures are: a maximum duration of an outage (equal to
mean time to repair, MTTR) and a frequency of
outages (represented with mean time between fail-
ures, MTBF). The three quantities are bound
together with the formula:

%100•
+

=
MTTRMTBF

MTBFA

Typically, the required level of availability is ex-
pressed as the number of “nines”. In a “five nines”

1 www.saforum.org

system, the required availability is not less then
99.999% (a typical telecom requirement). This repre-
sents a maximum of about 5 minutes of downtime
during one year. Additionally, the maximum outage
time is required to be between 50 ms and 5 s, de-
pending on the application. It is obvious that a great
deal of self-management is to be utilized in such
systems in order to meet the availability require-
ments, especially in unattended operations. Thus,
HA technologies go hand in hand with autonomous
approaches as they complement each other. Autono-
mous computing [2] [8] (synonymous to self-
management) is “best considered a strategic refocus
for the engineering of effective systems” [13]. The
attributes of an autonomous system are self-protect-
ing, self-configuring, self-healing and self-optimiz-
ing. System availability falls, naturally, under the
category of self-healing.

Databases have become an important ingredient
of telecom platforms. Being at a focal point of the
service applications, they bear the highest
availability expectations. However, most of the
advances in autonomic database research have been
addressing the attributes of self-optimizing and self-
configuring, rather then self-healing in the sense of
availability preserving [5].

When you are building a HA database manage-
ment system (HADBMS), you can ask the following
question from the dependability point of view [10]:
what are the threats to availability and how are you
going to deal with them in a self-managed way? The
answer seems to be, traditionally, that the threats are
errors and the resulting faults [10]. Errors and faults
may appear both in hardware and software.
However, a new significant source of errors and
faults is the process of dynamic software upgrades
[11] [14]. The graveness of the phenomenon has
caught both researchers and practitioners by surprise:
a casual scan of the trade press reveals that more
then half of serious mobile network outages (1 hour
or more) was caused by failed software upgrades.

In an HA system model like that of the SA Fo-
rum's Availability Management Framework (AMF)
[1] [7], all threats translate to failures. The unit of
failure is a service unit that may comprise of one or
more components. To deal with failures, the system

 2

embodies redundancy both in hardware and
software, managed by the framework like AMF.
Each software component is connected to AMF by
way of a related API. The most common redundancy
model supported is that of active-standby whereby
the framework commands standby components (in a
standby unit) to action should any component in the
active unit fail. The AMF model is a synthesis based
on many existing commercial HA framework
implementations.

In this paper, we set a question whether the
DBMS-internal self-management capabilities are
sufficient to deal with typical threats in a highly-
available system. Another question is whether an
HA framework may be useful in improving the
database availability. We analyze the problems and
solutions encountered in the development of an
industrial platform: Resilient Telco Platform for
Continuous Services (RTP4CS™) by Fujitsu
Siemens Computers. Having done the study, we
conclude that the answer to the former question is
“no”, and to the latter one ”yes”. As a result, we
propose a reference division of responsibilities in a
system supporting highly available data services.

2. Highly Available Databases and
Threats to Availability

2.1. Solid CarrierGrade Database

In highly available databases, redundancy may be
applied both to processes (running program in-
stances) and data, thus resulting in numerous redun-
dancy models [4]. In this paper, we deal with the
most basic one, that is a fully replicated active-
standby configuration, called here Hot-Standby Da-
tabase (HSBDB).

Database
Transactions

Node A

DB Process
(Active)

Primary
D

Replication

Node B

DB Process
(Standby)

Secondary
D´

HSBDB

Fig. 1. A fully replicated hot-standby database.

Fig. 1 depicts the architecture of HSBDB. In the

case study introduced in the next Section, a corre-
sponding HSBDB implementation by Solid2 was
utilized.

2 www.solidtech.com

The process components are called Active and
Standby and the corresponding data components are
called, Primary and Secondary, respectively (for
simplicity, we will call the processes Primary and
Secondary, too). The state of Secondary is main-
tained by way of a continuous transactional replica-
tion. We deal with one-way replication only, as it is
commonly preferred over more complex replication
schemes, for performance reasons. The effect of one-
way replication is that the Secondary process can
barely offer any transaction service other than read-
only transactions.

The replication protocols may be roughly divided
into 1-safe and 2-safe protocols [6] and, especially
for 2-safe protocols, further subclasses may be de-
fined [4]. The word “hot” in “hot standby” means
that the standby process may take over the load im-
mediately, regardless of the protocol used. “Immedi-
ately” is understood as allowing for delays between a
few tens of milliseconds and a few seconds. This
precludes any possibility to perform a full database
recovery or restore. The failover time is spent
entirely on internal state processing and flushing the
transaction queues. The time required by the latter
task depends on the replication protocol used, as
different types of protocols represent different trade-
off between run-time performance and failover time
[4]. The self-healing capabilities of an HADBMS (in
the sense of preserving availability) are reflected in
the externally perceived state behavior. A corre-
sponding simplified state diagram of the Solid Carri-
erGrade Database Engine [12] is shown in Fig. 2.

PRIMARY
ACTIVE

SECONDARY
ACTIVE

PRIMARY
ALONE

SECONDARY
ALONE

STANDALONE PRIMARY
UNCERTAIN

OFFLINEStart
(no database)

Start
(database

exists)

Failover

Switchover

Fig. 2. HA State diagram of the Solid Carrier
Grade Database Engine.

The operational hot-standby states are shown on

the right-hand side of the diagram: PRIMARY AC-
TIVE (i.e. active) and SECONDARY ACTIVE (i.e.
standby). Other states come into the picture when
taking care of various failure, startup and reconfigu-
ration scenarios.

The state behavior is externalized in the form of
commands for invoking state transition and querying
the state. The commands are available to applications
(or an HA manager) as extensions of the SQL lan-

 3

guage. For a full description of the states and transi-
tions, see [12]. The transitions shown in bold, in Fig.
2, are executed autonomously by the database server
process. They have to do with falling back to a “dis-
connected” state (i.e. PRIMARY ALONE or. SEC-
ONDARY ALONE), both on the Primary and Sec-
ondary side, should a communication failure occur
between Primary and Secondary. This behavior is
possible thanks to a built-in heartbeat functionality.
All other transitions are invoked with administration
commands.

Thus, the crucial failover transition is also in-
voked by an external entity, like an HA manager or
an HA framework. It is performed with a single
command, 'SET PRIMARY ALONE' that may be
issued in both the SECONDARY ACTIVE and
SECONDARY ALONE state (because the
Secondary server might have fallen back to the
ALONE state already). The resulting state is
PRIMARY ALONE that is HA-aware in the sense
that it involves collecting committed transactions to
be delivered later to the Secondary, upon reconnect
and the resulting “catchup” (i.e. re-synchronizing the
database state).

If a failure case we are dealing with is such that
no reconnect is likely to happen in the near future,
there is a possibility to move to a “pure”
STANDALONE state that has no HA-awareness. In
that case, future actions may include restarting a
Secondary database server without a database, and
sending a database over the network (so-called
“netcopy”). For this purpose there exists a startup
state OFFLINE whose only purpose is to receive the
database with a netcopy. After the successful
netcopy, the state SECONDARY ALONE is
reached, and the command 'CONNECT' brings both
servers back into the operational hot-standby state.
On the other hand, if the candidate Secondary
involves a database that can be resynchronized
(caught-up), the startup state is SECONDARY
ALONE.

The auxiliary state PRIMARY UNCERTAIN is
meant for reliable dealing with Secondary failures. If
the internal heartbeat alerts the Primary server that
the communication with the Secondary has failed,
and there are transaction commits that have been
sent but not acknowledged by the Secondary, the
resulting state is PRIMARY UNCERTAIN. In this
state the outstanding commits are blocked until
resolved. The resolution may happen automatically
when the Secondary becomes reconnected. Or, if the
Secondary is assumed to become defunct for a
longer period of time, command-invoked transitions
are possible, e.g. to PRIMARY ALONE whereby the
outstanding commits are accepted. (NOTE: the
PRIMARY UNCERTAIN state is not mandatory—it
may be by-passed with a configuration parameter
setting.)

In addition to the above transitions dealing with
failures, a role switch (switchover) may be
performed for maintenance purposes. It is invoked
with dedicated commands 'SWITCH [TO]
PRIMARY' and 'SWITCH [TO] SECONDARY'.

2.2. Why So Little Autonomy?

A question immediately arises: “why the failover

cannot be performed fully autonomously, by the da-
tabase server?”. The answer is: because of network
partitions. When the Secondary looses the Primary
connection, there is just not enough information
about the total state of the system to perform a
failover. The inactive connection may be a result of a
network partition whereby the Primary, in fact, func-
tions properly and serves the applications but cannot
reach the Secondary. If the Secondary unilaterally
decided upon failover, the system would end up with
two Primaries, and that would be an invitation to a
database consistency disaster (with no copy update
reconciliation method available). Therefore, the res-
ponsibilities for self-management have to be dis-
tributed among various levels of the system, as will
be shown in the sequel.

2.3. More Self-Healing

Failover capability is not the only possibility to
address self-healing at runtime. Two other examples
are adaptive durability and log stop.

Adaptive durability. The goal of adaptive durability
is to guarantee durability of transactions in a most
efficient way. Advantage is taken of the fact that, in
normal hot-standby operation, the log is effectively
written to Secondary in a synchronous way, if only a
2-safe protocol is used. We will call this effect hot-
standby durability. Additionally, writing over the
network, to another computer's memory turns out to
be at least an order of magnitude faster than writing
synchronously to a local disk. Therefore, in the op-
erational hot-standby state, the local log can be writ-
ten asynchronously. Should a failure of Secondary or
Primary happen, leading to the PRIMARY ALONE
state, the local log operation is automatically
changed to synchronous, thus guaranteeing full dura-
bility in a single-node operation. By full durability
we mean that all committed transactions are recover-
able after any level of failure other than media fail-
ure. Once the two-node hot-standby operation is
resumed, the local log writing falls back to the asyn-
chronous mode. Note: the approach does not guar-
antee full durability in the presence of a total system
failure, with some replication protocols like 2-safe
received [4].

 4

Log stop. Transaction log files occasionally grow in
an unexpected way because of reasons like failed
backups, delayed checkpoints, or simply high data
load. As a result, the system may run out of disk
space. In a non-adaptive DBMS, such situation
would most likely result in a system crash, or, at
best, in service denial. On the other hand, in
HSBDB, we may again take advantage of the
Secondary that is logging the data anyway. We may
apply an adaptive mechanism whereby the local log
writing is stopped and periodically re-enacted, for
example in connection with checkpoints or backups
(when hopefully some disk space will be freed).
Note: neither this approach guarantees full durability
in the presence of a total system failure, with some
replication protocols.

2.4. Threats to Continuous Data Manage-
ment

Below is a list of threats that an HADBMS may
face in real-life environments. The environment we
assume is a multi-node cluster computer. The data-
base is run on selected nodes of the cluster. The pur-
pose of the list is to serve as a basis for the case
study analysis in the next Section.

Hardware threats

• CPU hardware fault (has to be replaced)
• Disk hardware fault (has to be replaced)
• Disk is full (has to be reorganized)
• Network adapter fault
• Network partition
• Power supply failure: isolated
• Power supply failure: total
• HW upgrade or maintenance

HADBMS software threats
• Server process exception or assertion
• Process hang-up
• Database corruption
• Unexpected build-up of resources, e.g. mem-

ory allocation
• Unexpected degradation of performance
• DBMS upgrade

External software threats
• OS failure
• HA framework failure
• HA framework hang-up
• OS upgrade
• HA framework upgrade
• Application upgrade

3. The Case of Solid and RTP4CS

3.1. About RTP4CS

Fujitsu Siemens Computers3 offers SAFE4CS™
(SA Forum Environment for Continuous Services) as
a SA Forum-compliant carrier-grade middleware
suite. Carrier-grade environments require extremely
high availability (99.999%+) and manageability. To
meet this requirement, Fujitsu Siemens Computers
have developed SAFE4CS consisting of PRIME-
CLUSTER™, a standard clustering software solu-
tion, RTP4CS carrier-grade high-availability mid-
dleware, and ServerView, the company’s systems
management tool. The configuration of a server node
is shown in Fig. 3.

DB Server Node

Solid
CG DE

Operating System

Applications

SAFE4CS

RTP4CS

PRIMECLUSTER

Server
View

Fig. 3. Components of a server node.

RTP4CS (Resilient Telco Platform for

Continuous Services) [9] is targeted for utilization in
contemporary network elements like that of 3G
mobile networks, Intelligent Networks and Voice-
over-IP services. It runs on multi-node clusters built
on several hardware platforms, currently under
Linux and Solaris operating systems. The overall
architecture of the platform is shown in Fig. 4.

Node 1

Solid
CG DE

Pri

DB Service

OS

Node 2

Applications

Solid
CG DE

Sec

OS

Node 4

OS

Node N

OS

Node 3

OS

SAFE4CS: RTP4CS, PRIMECLUSTER and ServerView

Solid
Spare
Node

Client
Only
Node

Client
Only
Node

Fig. 4. Cluster architecture.

RTP4CS is a distributed system managing the re-

dundancy embedded in the system. By “managing
redundancy” we mean providing a single system
image and isolating the applications from the effects
of redundancy, failovers, or even replacement of
failed components with dedicated spare components.

The proven versions of RTP4CS offer the re-
quired functionality via proprietary interfaces tai-

3 www.fujitsu-siemens.com

 5

lored to the needs of telco applications. Forthcoming
versions of RTP4CS will include the implementation
of the evolving standardized Service Availability
Forum Application Interface Specifications (SA
FORUM AIS).

RTP4CS embeds Solid's CarrierGrade Database
Engine (Solid CG DE) for the purposes of configu-
ration management and application data manage-
ment.

3.2. Failure Handling Scenarios

As concerns threats to the database availability,
we try to cover all possible failure handling scenar-
ios. One of the main goals of our project is to
provide service availability by coordinating
redundant resources within a cluster to deliver a
system with no single point of failure. Therefore we
don’t deal here with double failures.

Beyond the SA Forum AIS functionality,
RTP4CS provides the Audit, Recovery and Alarm
Manager Instances to handle different failure
scenarios. The Audit Manager may watch arbitrary
resources, e.g. disk space. The Recovery Manager
uses active objects called reactors which will be
activated, if the resource consumption reaches
predefined levels. In such a case, a backup of the
database or a cleanup of a file system may be started.
With these methods, a lot of error situations can be
avoided, and preventive system maintenance may be
applied. If the situation can’t be handled
automatically in any way, the problem will be
escalated by the Alarm Manager to the maintenance
team. As a last remedy, a cluster restart may be
activated manually.

In a telco environment we assume that a
redundant hardware and network configuration is
used.

Advanced cluster management products, like
PRIMECLUSTER of Fujitsu Siemens Computers,
supervise not only the nodes, but the network re-
sources too. In the very rare case of a serious net-
work error (inability of a node to communicate),
PRIMECLUSTER, using special hardware features,
eliminates (resets, reboots) the erroneous node. This
solution reduces a network error to the node failure.
Consequently, the node failure of the primary node
inflicts a failover controlled by the redundancy man-
ager of RTP4CS.

The most important scenarios are listed below, to-
gether with the threats they address. The responsibil-
ity for a given step is marked in the following way:
'MF' designates the availability management frame-
work (represeneted by RTP4CS) and 'DB' means the
DBMS (represented by Solid CG DE).

(A) Failover and quick DB service repair

Threats
• DBMS Server process exception or assertion

in the Primary.
• Primary DBMS hang-up.
• DBMS performance degradation in the Pri-

mary.
• Unexpected build-up of resources in the

Primary DBMS.

Solution
1) DB: Monitor the Primary with:

- heart beat
- reading, in real-time, the RDBMS event
log.

2) DB (possibly): Secondary: fall back to SEC-
ONDARY ALONE.

3) MF: Conclude that the performance of the
Primary is not sufficient, or it has failed.

4) MF: terminate the old primary (if not termi-
nated)

5) MF: Execute a failover.
6) DB: On MF's request, command the old

Secondary to become a new Primary. Adjust
log writing to the required level of durability.

7) MF: Restart the new Secondary DBMS
server.

8) MF: Provided the DB recovery is successful,
reconnect (if recovery failed, switch to sce-
nario C).

9) DB: resynchronize the databases.
10) DB: Adjust log writing to the required level

of durability.
11) MF: (Optionally) execute switchover to re-

turn to the preferable Primary/Secondary
configuration.

(B) Failover and cold restart of the new Secon-
dary

Threats
• Total software failure of the Primary node.
• Operating system malfunction of the Primary

node.

Solution
Same as in scenario A, except that the step 7)
should be: reboot the failed node.

(C) Failover and reconstruction of a database

Threats
• Corruption of the Primary database.
• Disk is full.

Solution
1) DB: Filter out the events pertaining to

corrupted or inoperable database.
2) MF: Conclude that the database is corrupted.

 6

3) MF: terminate the old primary (if not termi-
nated).

4) MF: Execute failover.
5) DB: On MF's request, command the old

Secondary to become a new Primary. Adjust
log writing to the required level of durability

6) MF: Repair the failed node and restart it as a
new Secondary in the OFFLINE state.

7) DB: Netcopy the database back to the new
Secondary.

8) MF: Reconnect.
9) DB: Resynchronize the databases.
10) DB: Adjust log writing to the required level

of durability.

(D) Failover and activation of a Spare

Threats
• Serious hardware failure (damage of the CPU

or disk).
• Network partition (isolated node).
• Network adapter fault.
• Local power supply failure.

Solution
1) DB/MF: Detect inoperable or isolated pri-

mary node.
2) DB: Secondary: fall back to SECONDARY

ALONE.
3) MF: Execute failover.
4) DB: On MF's request, command the old

Secondary to become a new Primary. Adjust
log writing to the required level of durability.

5) MF: Designate a Spare node to be a new
Secondary.

6) MF: Start the new Secondary in the
OFFLINE state.

7) DB: Netcopy the database to the Secondary.
8) MF: Reconnect.
9) DB: Resynchronize the databases.
10) DB: Adjust log writing to the required level

of durability.

(E) Secondary failure and migration to a Spare

Threats (in Secondary)
• Serious hardware failure (damage of the CPU

or disk).
• Network partition (isolated node).
• Local power supply failure.

Solution
1) DB/MF: Detect inoperable or isolated Secon-

dary node.
2) DB: Primary: fall back to PRIMARY

ALONE.
3) DB: Adjust log writing to the required level

of durability.

4) MF: Designate a Spare node to be a new
Secondary.

5) MF: Start the new Secondary in the OFF-
LINE state.

6) DB: Netcopy the database to the Secondary.
7) MF: Reconnect.
8) DB: Resynchronize the databases.
9) DB: Adjust log writing to the required level

of durability.

(F) Short-term Secondary failure

Threats (in Secondary)
• Process exception or assertion.
• Process hang-up.
• Database corruption.
• Unexpected build-up of resources, e.g.

memory allocation.
• Unexpected degradation of performance.

Solution
1) DB/MF: Detect inoperable or isolated Secon-

dary node.
2) DB: Primary: fall back to PRIMARY

ALONE.
3) DB: Adjust log writing to the required level

of durability.
4) MF: Restart the Secondary node
5) MF: Reconnect.
6) DB: Resynchronize the databases.
7) DB: Adjust log writing to the required level

of durability

(G) Maintenance Secondary migration to a Spare

Threats
• Hardware upgrade.
• Hardware maintenance.
• Any software upgrade to be performed and

tested in isolation,by way of a spare node.
Solution

1) MF: Set Primary to PRIMARY ALONE.
2) MF: Terminate Secondary.
Continue with step 3) of scenario E.

(H) Short-term Secondary maintenance

Threats
• quick OS or HA framework upgrade.
• quick HW upgrade or maintenance.

Solution
1) MF: (If needed) Execute switchover.
2) MF: Set Primary to PRIMARY ALONE.
3) DB: Adjust log writing to the required level

of durability.
4) MF: Terminate Secondary.
5) Perform the Secondary upgrade or

maintenance.
Continue with step 7) of scenario A.

 7

(I) Switchover to a new DBMS version

Threats
• DBMS version upgrade.

Solution
1) MF: Terminate the old Secondary and

upgrade.
2) MF: Start the old Secondary and reconnect.
3) MF: Execute switchover.
4) DB: On MF's request, command the old

Secondary to become a new Primary and vice
versa.

5) MF: Shut down the new Secondary and
upgrade.

6) MF: Start the new Secondary.
7) DB: Reconnect.
8) DB: Resynchronize the databases.
9) DB: Adjust log writing to the required level

of durability.

(J) Miscellaneous failures

Threats
• Total power supply failure.
• HA framework failure.
• HA framework hang-up.

Solutions
The above failures cannot be dealt with by the
HA framework because it is not operational. A
cold restart is required whereby the state of all
components is rebuilt from the persistent storage.
A normal database recovery procedure will
assure that the databases (both Primary and
Secondary) are recovered to a consistent state.

4. Failure Scenarios: What Have We
Learned?

4.1. Discussion

From the implemented scenarios shown above,
you can see that the responsibilities for management
of redundant DBMS components were divided be-
tween the DBMS and the AMF.

Was it needed? Could not the HADBMS manage
totally its own redundancy? To answer this question,
let us assume that there existed some layer, or com-
ponent, of the HADBMS to do that. Then, for exam-
ple, in scenario D (Failover and activation of a
Spare), the DBMS might choose a certain node to
become a new Secondary. In the same time the clus-
ter's own availability management framework may
“have a different idea” about the choice. For exam-
ple, the selected node might be engaged in serving
other purposes. Allocation of resources might be also

done dynamically and thus the two redundancy man-
agers would compete for resources. So far, no work
has been done on developing methods for coordina-
tion of competing redundancy managers. Addition-
ally, the DBMS may not be able to collect all the
information about the cluster status—the information
a well-instrumented AMF would have at its disposal.
The conclusion is that the redundancy management
has to be centralized, in a cluster, in order for the
resources to be used efficiently and in a consistent
way. This goal is achieved using means available to
AMF: configuration definitions assigning available
resources to service units and service groups (sets of
units), rules for cluster membership whereby nodes
and other components may join and leave the cluster,
redundancy models supported, and redundancy man-
agement policies that embody scenarios as shown
above.

What is left to DBMS? An HADBMS should be
built to cooperate seamlessly with the AMF. For this
to happen in general case, standard interfaces have to
be upheld. The work by SA Forum has already pro-
duced such interfaces [1].

Based on the experience of this case study, the di-
vision of responsibilities between a DBMS and AMF
proposed below seems to be plausible.

4.2. HADBMS: division of responsibilities

Responsibilities of the Availability Management
Framework

• Maintain cluster membership.
• Maintain redundancy configuration (compo-

nents, service units, service groups, etc.) as
specified.

• Execute the redundancy management policies
and failover scenarios as specified, for the
HADBMS components. Specifically, start
and terminate DBMS processes, control the
DBMS HA states.

• Monitor the performance of the HADBMS
components.

Responsibilities of the HADBMS

• Perform self-healing actions that are re-
stricted to a single process, database or node
(no global system state knowledge neces-
sary—like adaptive durability).

• Perform safe state transitions based on the
events in the immediate (local node) envi-
ronment (like falling back to the ALONE
state)

• Execute HA state transitions as requested by
AMF.

• Comply with the AMF interface.

 8

5. Conclusions

By analyzing a concrete example of implementing
a highly available DBMS in the environment of an
HA cluster, we have come to the conclusion that the
responsibility to deal with various threats should be
distributed at least between two layers of the system:
the DBMS itself and the availability management
framework. In order to build total HA systems out of
heterogeneous and pre-existing components, the
division of responsibilities and the suitable interface
have to be defined. In this respect, the work by the
Service Availability Forum is a welcome activity.
The interaction between the HA framework and a
DBMS may be defined in the context of SA Forum
interfaces. However, database developers have to
agree on what is a set of functionality supported in
an HA DBMS to be mapped to the SA Forum
interfaces.

References

[1] "Application Interface Specification, SAI-AIS-
B.01.01", Service Availability Forum, November 2004,
available at www.saforum.org.

[2] "Autonomic Computing Manifesto", IBM White Pa-
per, IBM, 2001, available at
www.research.ibm.com/autonomic/manifesto/autonomic_-
computing.pdf.

[3] S. Brossier, F. Herrmann, E. Shokri, "On the Use of
the SA Forum Checkpoint and AMF Services" Proc. In-
ternational Service Availability Symposium (ISAS 2004),
May 13-14, 2004, Munich, Germany.

[4] S. Drake, W. Hu, D. M. McInnis, M. Sköld, A.
Srivastava, L. Thalmann, M. Tikkanen, Ø. Torbjørnsen
and A. Wolski "Architecture of Highly Available Data-
bases", Proc. International Service Availability Symposium
(ISAS 2004), May 13-14, 2004, Munich, Germany.

[5] S. Elnaffar, W. Powley, D. Benoit, and P. Martin,
"Today’s DBMSs: How Autonomic Are They?", Proc.
First International Autonomic Systems Workshop, DEXA
2003, Prague.

[6] J. Gray and A. Reuter, "Transaction Processing Sys-
tems, Concepts and Techniques", Morgan Kaufmann
Publishers, 1992-

[7] T. Jokiaho, F. Herrmann, D. Penkler, L. Moser, "The
Service Availability Forum Application Interface Specifi-
cation", The RTC Magazine, June 2003, pp. 52-58.

[8] J. O. Kephart, D. M. Chess, "The Vision of Auto-
nomic Computing", IEEE Computer 36(1): 41-50 (January
2003).

[9] J. Neises, "Benefit Evaluation of High Availability
Middleware", Proc. International Service Availability
Symposium (ISAS 2004), May 13-14, 2004, Munich, Ger-
many.

[10] B. Randell, “Turing Memorial Lecture – Facing Up to
Faults”, Comp. J. 43(2), pp 95-106, 2000.

[11] M. Segal, O. Frieder, "On-the-fly Program Modifica-
tion: Systems for Dynamic Upgrading", IEEE Software,
March 1993, pp. 53-65.

[12] "Solid High Availability User Guide, Version 4.2",
Solid Information Technology, June 2004, available at
http://www.solidtech.com.

[13] R. Sterritt, D. W. Bustard, "Autonomic Computing -
A Means of Achieving Dependability?", Proc. 10th IEEE
International Conference and Workshop on the Engineer-
ing of Computer-Based Systems (ECBS 2003), pp. 247-
251.

[14] A. Wolski and K. Laiho, "Rolling Upgrades for Con-
tinuous Services", Proc. International Service Availability
Symposium (ISAS 2004), May 13-14, 2004, Munich, Ger-
many.

	Introduction
	Highly Available Databases and Threats to Availability
	Solid CarrierGrade Database
	Why So Little Autonomy?
	More Self-Healing
	Threats to Continuous Data Manage˜ment
	Hardware threats
	HADBMS software threats
	External software threats

	The Case of Solid and RTP4CS
	About RTP4CS
	Failure Handling Scenarios
	(A) Failover and quick DB service repair
	(B) Failover and cold restart of the new Secon˜dary
	(C) Failover and reconstruction of a database
	(D) Failover and activation of a Spare
	(E) Secondary failure and migration to a Spare
	(F) Short-term Secondary failure
	(G) Maintenance Secondary migration to a Spare
	(H) Short-term Secondary maintenance
	(I) Switchover to a new DBMS version
	(J) Miscellaneous failures

	Failure Scenarios: What Have We Learned?
	Discussion
	HADBMS: division of responsibilities

	Conclusions
	References

