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Abstract 
 

While it is obvious that a highly available data-
base requires some degree of self-management, it is 
not clear to what extend and how the responsibilities 
should be divided among the DBMS, the 
surrounding HA framework or even applications. We 
start with analyzing expectations of an HA database 
in a telecom setup. We check how the expectations 
are met in a commercial implementation of a 
telecom platform. We analyze the way of allocating 
various HA responsibilities to different parts of the 
system. We end up with a reference division of self-
managing responsibilities in an HA DBMS and the 
surrounding HA framework. 
 
 
1.  Introduction 
 

The way high-availability (HA) systems deal with 
failures is that failures are allowed, but the concept 
of service continuity is embraced. It is based on the 
notion that very short breaks in operation of service-
providing applications are tolerable to a certain ex-
tent. For example, on these premises, the Service 
Availability Forum (SA Forum)1 is producing API 
specifications for the use by manufacturers of high-
availability frameworks that are being delivered to 
the telecom field as components of telecom plat-
forms. To say to what extent failures are tolerable, 
one may use the measure of availability A. It is ex-
pressed as the percentage of the time a service is 
operational, as related to the total time the service is 
supposed to be operational. Other important meas-
ures are: a maximum duration of an outage (equal to 
mean time to repair, MTTR) and a frequency of 
outages (represented with mean time between fail-
ures, MTBF). The three quantities are bound 
together with the formula: 

%100•
+

=
MTTRMTBF

MTBFA
 

Typically, the required level of availability is ex-
pressed as the number of “nines”. In a “five nines” 
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system, the required availability is not less then 
99.999% (a typical telecom requirement). This repre-
sents a maximum of about 5 minutes of downtime 
during one year. Additionally, the maximum outage 
time is required to be between 50 ms and 5 s, de-
pending on the application. It is obvious that a great 
deal of self-management is to be utilized in such 
systems in order to meet the availability require-
ments, especially in unattended operations. Thus, 
HA technologies go hand in hand with autonomous 
approaches as they complement each other. Autono-
mous computing [2] [8] (synonymous to self-
management) is “best considered a strategic refocus 
for the engineering of effective systems” [13]. The 
attributes of an autonomous system are self-protect-
ing, self-configuring, self-healing and self-optimiz-
ing. System availability falls, naturally, under the 
category of self-healing. 

Databases have become an important ingredient 
of telecom platforms. Being at a focal point of the 
service applications, they bear the highest 
availability expectations. However, most of the 
advances in autonomic database research have been 
addressing the attributes of self-optimizing and self-
configuring, rather then self-healing in the sense of 
availability preserving [5].  

When you are building a HA database manage-
ment system (HADBMS), you can ask the following 
question from the dependability point of view [10]: 
what are the threats to availability and how are you 
going to deal with them in a self-managed way? The 
answer seems to be, traditionally, that the threats are 
errors and the resulting faults [10]. Errors and faults 
may appear both in hardware and software. 
However, a new significant source of errors and 
faults is the process of dynamic software upgrades 
[11] [14]. The graveness of the phenomenon has 
caught both researchers and practitioners by surprise: 
a casual scan of the trade press reveals that more 
then half of serious mobile network outages (1 hour 
or more) was caused by failed software upgrades. 

In an HA system model like that of the SA Fo-
rum's Availability Management Framework (AMF) 
[1] [7], all threats translate to failures. The unit of 
failure is a service unit that may comprise of one or 
more components. To deal with failures, the system 
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embodies redundancy both in hardware and 
software, managed by the framework like AMF. 
Each software component is connected to AMF by 
way of a related API. The most common redundancy 
model supported is that of active-standby whereby 
the framework commands standby components (in a 
standby unit) to action should any component in the 
active unit fail. The AMF model is a synthesis based 
on many existing commercial HA framework 
implementations.  

In this paper, we set a question whether the 
DBMS-internal self-management capabilities are 
sufficient to deal with typical threats in a highly-
available system.  Another question is whether an 
HA framework may be useful in improving the 
database availability. We analyze the problems and 
solutions encountered in the development of an 
industrial platform: Resilient Telco Platform for 
Continuous Services (RTP4CS™) by Fujitsu 
Siemens Computers. Having done the study, we 
conclude that the answer to the former question is 
“no”, and to the latter one ”yes”. As a result, we 
propose a reference division of responsibilities in a 
system supporting highly available data services. 
 
2. Highly Available Databases and 
Threats to Availability 

2.1. Solid CarrierGrade Database 
 

In highly available databases, redundancy may be 
applied both to processes (running program in-
stances) and data, thus resulting in numerous redun-
dancy models [4]. In this paper, we deal with the 
most basic one, that is a fully replicated active-
standby configuration, called here Hot-Standby Da-
tabase (HSBDB).  

Database 
Transactions

Node A

DB Process
(Active)

Primary
D

Replication

Node B

DB Process
(Standby)

Secondary
D´

HSBDB

 
Fig. 1. A fully replicated hot-standby database. 

 
Fig. 1 depicts the architecture of HSBDB. In the 

case study introduced in the next Section, a corre-
sponding HSBDB implementation by Solid2 was 
utilized. 
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The process components are called Active and 
Standby and the corresponding data components are 
called, Primary and Secondary, respectively (for 
simplicity, we will call the processes Primary and 
Secondary, too).  The state of Secondary is main-
tained by way of a continuous transactional replica-
tion. We deal with one-way replication only, as it is 
commonly preferred over more complex replication 
schemes, for performance reasons. The effect of one-
way replication is that the Secondary process can 
barely offer any transaction service other than read-
only transactions.  

The replication protocols may be roughly divided 
into 1-safe and 2-safe protocols [6] and, especially 
for 2-safe protocols, further subclasses may be de-
fined [4]. The word “hot” in “hot standby” means 
that the standby process may take over the load im-
mediately, regardless of the protocol used. “Immedi-
ately” is understood as allowing for delays between a 
few tens of milliseconds and a few seconds. This 
precludes any possibility to perform a full database 
recovery or restore. The failover time is spent 
entirely on internal state processing and flushing the 
transaction queues. The time required by the latter 
task depends on the replication protocol used, as 
different types of protocols represent different trade-
off between run-time performance and failover time 
[4]. The self-healing capabilities of an HADBMS (in 
the sense of preserving availability) are reflected in 
the externally perceived state behavior. A corre-
sponding simplified state diagram of the Solid Carri-
erGrade Database Engine [12] is shown in Fig. 2. 

PRIMARY
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SECONDARY
ACTIVE

PRIMARY
ALONE

SECONDARY
ALONE

STANDALONE PRIMARY
UNCERTAIN

OFFLINEStart
(no database)

Start
(database

exists)

Failover

Switchover

 
Fig. 2. HA State diagram of the Solid Carrier 
Grade Database Engine. 

 
The operational hot-standby states are shown on 

the right-hand side of the diagram: PRIMARY AC-
TIVE (i.e. active) and SECONDARY ACTIVE (i.e. 
standby). Other states come into the picture when 
taking care of various failure, startup and reconfigu-
ration scenarios.  

The state behavior is externalized in the form of 
commands for invoking state transition and querying 
the state. The commands are available to applications 
(or an HA manager) as extensions of the SQL lan-
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guage. For a full description of the states and transi-
tions, see [12]. The transitions shown in bold, in Fig. 
2, are executed autonomously by the database server 
process. They have to do with falling back to a “dis-
connected” state (i.e. PRIMARY ALONE or. SEC-
ONDARY ALONE), both on the Primary and Sec-
ondary side, should a communication failure occur 
between Primary and Secondary. This behavior is 
possible thanks to a built-in heartbeat functionality. 
All other transitions are invoked with administration 
commands.  

Thus, the crucial failover transition is also in-
voked by an external entity, like an HA manager or 
an HA framework. It is performed with a single 
command, 'SET PRIMARY ALONE' that may be 
issued in both the SECONDARY ACTIVE and 
SECONDARY ALONE state (because the 
Secondary server might have fallen back to the 
ALONE state already). The resulting state is 
PRIMARY ALONE that is HA-aware in the sense 
that it involves collecting committed transactions to 
be delivered later to the Secondary, upon reconnect 
and the resulting “catchup” (i.e. re-synchronizing the 
database state).  

If a failure case we are dealing with is such that 
no reconnect is likely to happen in the near future, 
there is a possibility to move to a “pure” 
STANDALONE state that has no HA-awareness. In 
that case, future actions may include restarting a 
Secondary database server without a database, and 
sending a database over the network (so-called 
“netcopy”). For this purpose there exists a startup 
state OFFLINE whose only purpose is to receive the 
database with a netcopy. After the successful 
netcopy, the state SECONDARY ALONE is 
reached, and the command 'CONNECT' brings both 
servers back into the operational hot-standby state. 
On the other hand, if the candidate Secondary 
involves a database that can be resynchronized 
(caught-up), the startup state is SECONDARY 
ALONE. 

The auxiliary state PRIMARY UNCERTAIN is 
meant for reliable dealing with Secondary failures. If 
the internal heartbeat alerts the Primary server that 
the communication with the Secondary has failed, 
and there are transaction commits that have been 
sent but not acknowledged by the Secondary, the 
resulting state is PRIMARY UNCERTAIN. In this 
state the outstanding commits are blocked until 
resolved. The resolution may happen automatically 
when the Secondary becomes reconnected. Or, if the 
Secondary is assumed to become defunct for a 
longer period of time, command-invoked transitions 
are possible, e.g. to PRIMARY ALONE whereby the 
outstanding commits are accepted. (NOTE: the 
PRIMARY UNCERTAIN state is not mandatory—it 
may be by-passed with a configuration parameter 
setting.) 

In addition to the above transitions dealing with 
failures, a role switch (switchover) may be 
performed for maintenance purposes. It is invoked 
with dedicated commands 'SWITCH [TO] 
PRIMARY' and 'SWITCH [TO] SECONDARY'. 

2.2. Why So Little Autonomy? 
 
A question immediately arises: “why the failover 

cannot be performed fully autonomously, by the da-
tabase server?”. The answer is: because of network 
partitions. When the Secondary looses the Primary 
connection, there is just not enough information 
about the total state of the system to perform a 
failover. The inactive connection may be a result of a 
network partition whereby the Primary, in fact, func-
tions properly and serves the applications but cannot 
reach the Secondary. If the Secondary unilaterally 
decided upon failover, the system would end up with 
two Primaries, and that would be an invitation to a 
database consistency disaster (with no copy update 
reconciliation method available). Therefore, the res-
ponsibilities for self-management have to be dis-
tributed among various levels of the system, as will 
be shown in the sequel. 

2.3. More Self-Healing 
 

Failover capability is not the only possibility to 
address self-healing at runtime. Two other examples 
are adaptive durability and log stop.  

 
Adaptive durability. The goal of adaptive durability 
is to guarantee durability of transactions in a most 
efficient way. Advantage is taken of the fact that, in 
normal hot-standby operation, the log is effectively 
written to Secondary in a synchronous way, if only a 
2-safe protocol is used. We will call this effect hot-
standby durability. Additionally, writing over the 
network, to another computer's memory turns out to 
be at least an order of magnitude faster than writing 
synchronously to a local disk. Therefore, in the op-
erational hot-standby state, the local log can be writ-
ten asynchronously. Should a failure of Secondary or 
Primary happen, leading to the PRIMARY ALONE 
state, the local log operation is automatically 
changed to synchronous, thus guaranteeing full dura-
bility in a single-node operation. By full durability 
we mean that all committed transactions are recover-
able after any level of failure other than media fail-
ure. Once the two-node hot-standby operation is 
resumed, the local log writing falls back to the asyn-
chronous mode. Note: the approach does not guar-
antee full durability in the presence of a total system 
failure, with some replication protocols like 2-safe 
received [4]. 
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Log stop. Transaction log files occasionally grow in 
an unexpected way because of reasons like failed 
backups, delayed checkpoints, or simply high data 
load. As a result, the system may run out of disk 
space. In a non-adaptive DBMS, such situation 
would most likely result in a system crash, or, at 
best, in service denial. On the other hand, in 
HSBDB, we may again take advantage of the 
Secondary that is logging the data anyway. We may 
apply an adaptive mechanism whereby the local log 
writing is stopped and periodically re-enacted, for 
example in connection with checkpoints or backups 
(when hopefully some disk space will be freed). 
Note: neither this approach guarantees full durability 
in the presence of a total system failure, with some 
replication protocols. 

2.4. Threats to Continuous Data Manage-
ment 
 

Below is a list of threats that an HADBMS may 
face in real-life environments. The environment we 
assume is a multi-node cluster computer. The data-
base is run on selected nodes of the cluster. The pur-
pose of the list is to serve as a basis for the case 
study analysis in the next Section. 

 
Hardware threats 

• CPU hardware fault (has to  be replaced) 
• Disk hardware fault (has to be replaced) 
• Disk is full (has to be reorganized) 
• Network adapter fault 
• Network partition 
• Power supply failure: isolated 
• Power supply failure: total 
• HW upgrade or maintenance 
 

HADBMS software threats 
• Server process exception or assertion 
• Process hang-up 
• Database corruption 
• Unexpected build-up of resources, e.g. mem-

ory allocation 
• Unexpected degradation of performance 
• DBMS upgrade 
 
 

External software threats 
• OS failure 
• HA framework failure 
• HA framework hang-up 
• OS upgrade  
• HA framework upgrade 
• Application upgrade 
 

3. The Case of Solid and RTP4CS 

3.1. About RTP4CS 
 

Fujitsu Siemens Computers3 offers SAFE4CS™ 
(SA Forum Environment for Continuous Services) as 
a SA Forum-compliant carrier-grade middleware 
suite. Carrier-grade environments require extremely 
high availability (99.999%+) and manageability. To 
meet this requirement, Fujitsu Siemens Computers 
have developed SAFE4CS consisting of PRIME-
CLUSTER™, a standard clustering software solu-
tion, RTP4CS carrier-grade high-availability mid-
dleware, and ServerView, the company’s systems 
management tool. The configuration of a server node 
is shown in Fig. 3. 

DB Server Node 

Solid
CG DE

Operating System

Applications

SAFE4CS

RTP4CS

PRIMECLUSTER

Server
View

 
Fig. 3. Components of a server node. 

 
RTP4CS (Resilient Telco Platform for 

Continuous Services) [9] is targeted for utilization in 
contemporary network elements like that of 3G 
mobile networks, Intelligent Networks and Voice-
over-IP services. It runs on multi-node clusters built 
on several hardware platforms, currently under 
Linux and Solaris operating systems. The overall 
architecture of the platform is shown in Fig. 4. 
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Fig. 4. Cluster architecture. 

 
RTP4CS is a distributed system managing the re-

dundancy embedded in the system. By “managing 
redundancy” we mean providing a single system 
image and isolating the applications from the effects 
of redundancy, failovers, or even replacement of 
failed components with dedicated spare components.  

The proven versions of RTP4CS offer the re-
quired functionality via proprietary interfaces tai-
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lored to the needs of telco applications. Forthcoming 
versions of RTP4CS will include the implementation 
of the evolving standardized Service Availability 
Forum Application Interface Specifications (SA 
FORUM AIS). 

RTP4CS embeds Solid's CarrierGrade Database 
Engine (Solid CG DE) for the purposes of configu-
ration management and application data manage-
ment. 

3.2. Failure Handling Scenarios 
 

As concerns threats to the database availability, 
we try to cover all possible failure handling scenar-
ios. One of the main goals of our project is to 
provide service availability by coordinating 
redundant resources within a cluster to deliver a 
system with no single point of failure. Therefore we 
don’t deal here with double failures. 

Beyond the SA Forum AIS functionality, 
RTP4CS provides the Audit, Recovery and Alarm 
Manager Instances to handle different failure 
scenarios. The Audit Manager may watch arbitrary 
resources, e.g. disk space. The Recovery Manager 
uses active objects called reactors which will be 
activated, if the resource consumption reaches 
predefined levels. In such a case, a backup of the 
database or a cleanup of a file system may be started. 
With these methods, a lot of error situations can be 
avoided, and preventive system maintenance may be 
applied. If the situation can’t be handled 
automatically in any way, the problem will be 
escalated by the Alarm Manager to the maintenance 
team. As a last remedy, a cluster restart may be 
activated manually. 

In a telco environment we assume that a 
redundant hardware and network configuration is 
used. 

Advanced cluster management products, like 
PRIMECLUSTER of Fujitsu Siemens Computers, 
supervise not only the nodes, but the network re-
sources too. In the very rare case of a serious net-
work error (inability of a node to communicate), 
PRIMECLUSTER, using special hardware features, 
eliminates (resets, reboots) the erroneous node. This 
solution reduces a network error to the node failure. 
Consequently, the node failure of the primary node 
inflicts a failover controlled by the redundancy man-
ager of RTP4CS. 

The most important scenarios are listed below, to-
gether with the threats they address. The responsibil-
ity for a given step is marked in the following way: 
'MF' designates the availability management frame-
work (represeneted by RTP4CS) and 'DB' means the 
DBMS (represented  by Solid CG DE). 

 

(A) Failover and quick DB service repair 

Threats 
• DBMS Server process exception or assertion 

in the Primary. 
• Primary DBMS hang-up. 
• DBMS performance degradation in the Pri-

mary. 
• Unexpected build-up of resources in the 

Primary DBMS. 

Solution 
1) DB: Monitor the Primary with: 

- heart beat 
- reading, in real-time, the RDBMS event 
log. 

2) DB (possibly): Secondary: fall back to SEC-
ONDARY ALONE. 

3) MF: Conclude that the performance of the 
Primary is not sufficient, or it has failed. 

4) MF: terminate the old primary (if not termi-
nated) 

5) MF: Execute a failover.  
6) DB: On MF's request, command the old 

Secondary to become a new Primary. Adjust 
log writing to the required level of durability. 

7) MF: Restart the new Secondary DBMS 
server. 

8) MF: Provided the DB recovery is successful, 
reconnect (if recovery failed, switch to sce-
nario C). 

9) DB: resynchronize the databases. 
10) DB: Adjust log writing to the required level 

of durability. 
11) MF: (Optionally) execute switchover to re-

turn to the preferable Primary/Secondary 
configuration. 

 
(B) Failover and cold restart of the new Secon-
dary 

Threats 
• Total software failure of the Primary node. 
• Operating system malfunction of the Primary 

node. 

Solution 
Same as in scenario A, except that the step 7) 
should be: reboot the failed node. 

 
(C) Failover and reconstruction of a database 

Threats 
• Corruption of the Primary database. 
• Disk is full. 

Solution 
1) DB: Filter out the events pertaining to 

corrupted or inoperable database. 
2) MF: Conclude that the database is corrupted. 
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3) MF: terminate the old primary (if not termi-
nated). 

4) MF: Execute failover. 
5) DB: On MF's request, command the old 

Secondary to become a new Primary. Adjust 
log writing to the required level of durability 

6) MF: Repair the failed node and restart it as a 
new Secondary in the OFFLINE state. 

7) DB: Netcopy the database back to the new 
Secondary. 

8) MF: Reconnect. 
9) DB: Resynchronize the databases. 
10) DB: Adjust log writing to the required level 

of durability. 
 

 
(D) Failover and activation of a Spare 

Threats 
• Serious hardware failure (damage of the CPU 

or disk). 
• Network partition (isolated node). 
• Network adapter fault. 
• Local power supply failure. 

Solution 
1) DB/MF: Detect inoperable or isolated pri-

mary node. 
2) DB: Secondary: fall back to SECONDARY 

ALONE. 
3) MF: Execute failover. 
4) DB: On MF's request, command the old 

Secondary to become a new Primary. Adjust 
log writing to the required level of durability. 

5) MF: Designate a Spare node to be a new 
Secondary. 

6) MF: Start the new Secondary in the 
OFFLINE state. 

7) DB: Netcopy the database to the Secondary. 
8) MF: Reconnect. 
9) DB: Resynchronize the databases. 
10) DB: Adjust log writing to the required level 

of durability. 
 

(E) Secondary failure and migration to a Spare 

Threats (in Secondary) 
• Serious hardware failure (damage of the CPU 

or disk). 
• Network partition (isolated node). 
• Local power supply failure. 

Solution 
1) DB/MF: Detect inoperable or isolated Secon-

dary node. 
2) DB: Primary: fall back to PRIMARY 

ALONE. 
3) DB: Adjust log writing to the required level 

of durability. 

4) MF: Designate a Spare node to be a new 
Secondary. 

5) MF: Start the new Secondary in the OFF-
LINE state. 

6) DB: Netcopy the database to the Secondary. 
7) MF: Reconnect. 
8) DB: Resynchronize the databases. 
9) DB: Adjust log writing to the required level 

of durability. 
 

(F) Short-term Secondary failure 

Threats (in Secondary) 
• Process exception or assertion. 
• Process hang-up. 
• Database corruption. 
• Unexpected build-up of resources, e.g. 

memory allocation. 
• Unexpected degradation of performance. 

Solution 
1) DB/MF: Detect inoperable or isolated Secon-

dary node. 
2) DB: Primary: fall back to PRIMARY 

ALONE. 
3) DB: Adjust log writing to the required level 

of durability. 
4) MF: Restart the Secondary node 
5) MF: Reconnect. 
6) DB: Resynchronize the databases. 
7) DB: Adjust log writing to the required level 

of durability 
 

(G) Maintenance Secondary migration to a Spare 

Threats 
• Hardware upgrade. 
• Hardware maintenance. 
• Any software upgrade to be performed and 

tested in isolation,by way of  a spare  node.  
Solution 

1) MF: Set Primary to PRIMARY ALONE. 
2) MF: Terminate Secondary. 
Continue with step 3) of scenario E. 
 

(H) Short-term Secondary maintenance 

Threats 
• quick OS or HA framework upgrade. 
• quick HW upgrade or maintenance. 

Solution 
1) MF: (If needed) Execute switchover. 
2) MF: Set Primary to PRIMARY ALONE. 
3) DB: Adjust log writing to the required level 

of durability. 
4) MF: Terminate Secondary. 
5) Perform the Secondary upgrade or 

maintenance. 
Continue with step 7) of scenario A. 
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(I) Switchover to a new DBMS version 

Threats 
• DBMS version upgrade. 

Solution 
1) MF: Terminate the old Secondary and 

upgrade. 
2) MF: Start the old Secondary and reconnect. 
3) MF: Execute switchover. 
4) DB: On MF's request, command the old 

Secondary to become a new Primary and vice 
versa. 

5) MF: Shut down the new Secondary and 
upgrade. 

6) MF: Start the new Secondary. 
7) DB: Reconnect. 
8) DB: Resynchronize the databases. 
9) DB: Adjust log writing to the required level 

of durability. 
 

(J) Miscellaneous failures 

Threats 
• Total power supply failure. 
• HA framework failure. 
• HA framework hang-up. 

Solutions 
The above failures cannot be dealt with by the 
HA framework because it is not operational. A 
cold restart is required whereby the state of all 
components is rebuilt from the persistent storage. 
A normal database recovery procedure will 
assure that the databases (both Primary and 
Secondary) are recovered to a consistent state.  
 

4. Failure Scenarios: What Have We 
Learned? 

4.1. Discussion 
 

From the implemented scenarios shown above, 
you can see that the responsibilities for management 
of redundant DBMS components were divided be-
tween the DBMS and the AMF.  

Was it needed? Could not the HADBMS manage 
totally its own redundancy? To answer this question, 
let us assume that there existed some layer, or com-
ponent, of the HADBMS to do that. Then, for exam-
ple, in scenario D (Failover and activation of a 
Spare), the DBMS might choose a certain node to 
become a new Secondary. In the same time the clus-
ter's own availability management framework may 
“have a different idea” about the choice. For exam-
ple, the selected node might be engaged in serving 
other purposes. Allocation of resources might be also 

done dynamically and thus the two redundancy man-
agers would compete for resources. So far, no work 
has been done on developing methods for coordina-
tion of competing redundancy managers. Addition-
ally, the DBMS may not be able to collect all the 
information about the cluster status—the information 
a well-instrumented AMF would have at its disposal. 
The conclusion is that the redundancy management 
has to be centralized, in a cluster, in order for the 
resources to be used efficiently and in a consistent 
way. This goal is achieved using means available to 
AMF: configuration definitions assigning available 
resources to service units and service groups (sets of 
units), rules for cluster membership whereby nodes 
and other components may join and leave the cluster, 
redundancy models supported, and redundancy man-
agement policies that embody scenarios as shown 
above. 

What is left to DBMS? An HADBMS should be 
built to cooperate seamlessly with the AMF. For this 
to happen in general case, standard interfaces have to 
be upheld. The work by SA Forum has already pro-
duced such interfaces [1]. 

Based on the experience of this case study, the di-
vision of responsibilities between a DBMS and AMF 
proposed below seems to be plausible. 

4.2. HADBMS: division of responsibilities 
 
Responsibilities of the Availability Management 
Framework 

• Maintain cluster membership. 
• Maintain redundancy configuration (compo-

nents, service units, service groups, etc.) as 
specified. 

• Execute the redundancy management policies 
and failover scenarios as specified, for the 
HADBMS components. Specifically, start 
and terminate DBMS processes, control the 
DBMS HA states. 

• Monitor the performance of the HADBMS 
components. 

 
Responsibilities of the HADBMS 

• Perform self-healing actions that are re-
stricted to a single process, database or node 
(no global system state knowledge neces-
sary—like adaptive durability). 

• Perform safe state transitions based on the 
events in the immediate (local node) envi-
ronment (like falling back to the ALONE 
state) 

• Execute HA state transitions as requested by 
AMF. 

• Comply with the AMF interface. 
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5. Conclusions 
 

By analyzing a concrete example of implementing 
a highly available DBMS in the environment of an 
HA cluster, we have come to the conclusion that the 
responsibility to deal with various threats should be 
distributed at least between two layers of the system: 
the DBMS itself and the availability management 
framework. In order to build total HA systems out of 
heterogeneous and pre-existing components, the 
division of responsibilities and the suitable interface 
have to be defined. In this respect, the work by the 
Service Availability Forum is a welcome activity. 
The interaction between the HA framework and a 
DBMS may be defined in the context of SA Forum 
interfaces. However, database developers have to 
agree on what is a set of functionality supported in 
an HA DBMS to be mapped to the SA Forum 
interfaces. 
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