

EMBEDDING DATA RECHARGING
IN MOBILE PLATFORMS

Antoni Wolski
Solid Applied Research Center

Merimiehenkatu 36 D, FIN-00150 Helsinki, Finland
antoni.wolski@solidtech.com

Abstract

Data recharging takes care of maintaining mobile data up-to-date. Similarly to battery power,
when one runs out of fresh data, one needs to recharge. Data recharging may be a complex
process involving data base replication, timely synchronization and data reconciliation in the
cases of conflicting operations. In this paper, generalized embeddable data recharging
solutions are introduced. General concepts of data replication and the related consistency
models are presented. Synchronization methods are discussed, together with the considera-
tions of flexibility and scalability. Commercially available means to implement data recharg-
ing are analyzed. Latest research efforts in the area of data recharging are also reviewed.

1 Introduction

In mobile devices, data recharging is an analogy to
power recharging. Similarly to running out of battery
power, the device may run out of fresh data. By data
recharging the device, we refresh the device's data
cache so that it is up-to-date [CFZ01]. Data recharg-
ing should be implemented in such a way that it
would be as transparent to the user as possible. In an
ideal case, whenever a network connection is possi-
ble, the device should data recharge itself, possibly
even without the user consent, or with minimum user
action (connect to a network jack or push a button to
accept a wireless connection).

In the core of data recharging are data replication
techniques. Data replication has been used, over
years, to satisfy various needs: from speeding up
query processing with materialized views to im-
proving data availability and fault tolerance. A subset
of replication methods is applicable to mobile envi-
ronments. Such methods may be implemented in a
distributed, mobile data recharging platform embed-
ded in both the stationary and mobile devices of a
system. Existence of such a platform would facilitate
data recharging for applications at no additional
development cost.

Database products equipped in data replication
mechanisms are good candidates for a data recharg-
ing platform. However some specific capabilities are
required in order to meet the special requirements of
scalability, data consistency and manageability of
mobile environments.

In this paper, we survey the data replication ap-
proaches in general and their applicability to data
recharging. Various requirements of data recharging
are discussed. Platform implementation scenarios are
analyzed to see how well they fit the set of require-
ments. Most prominent replication techniques are
presented.

In the end, latest research efforts in the area of data
recharging are discussed.

2 Concepts of data replication

The notion of data replication has many facets. Over
time, different shapes of replication technology have
surfaced to satisfy various emerging needs. Even
today, the term may have different meaning depend-
ing on the context. In some cases, the term synchro-
nization is used synonymously with replication.
However, we shall see that the term replication has a
broader meaning.

Real-Time & Embedded Computing Conference (RTEC'01),
Milan, Italy, November 26 - 29, 2001.
(Revised December 12, 2001)

Copyright 2001 by Solid Information Technology

Replication
A way to make copies of data with the purpose of
using the copies instead of the original data.

Synchronization
A process or a method to make copies mutually
consistent.

Some replication methods need synchronization and
others do not. Generally, in synchronous replication
methods the copies are synchronized within the
boundaries of updating transactions and no addi-
tional synchronization steps are needed. Synchronous
methods guarantee the same level of transaction exe-
cution correctness as if there was only one copy of
data. On the other hand, in asynchronous replication,
typically only one copy is updated, and a separate
step of copy synchronization is needed.

Eager (synchronous) replication
A replication method utilizing a transaction proc-
essing system to maintain immediately consistent
copies.

Lazy (asynchronous) replication
Any method that is not synchronous; a separate
synchronization method may be needed.

One can see that eager methods are associated with
transaction-capable systems. Conversely, in the
absence of a transaction processing system, we deal
always with lazy methods that come in a great vari-
ety. Among various topologies of lazy replication,
the most important distinction is in the number of
updateable copies.

One-way replication
There is a designated primary copy all the up-
dates are applied to. The changes are propagated
to a number of secondary read-only copies.

Two-way replication (update anywhere)
Updates can be applied to any copy.

Sometimes a special distinction is made about an
arrangement of copies, especially when they are not
equal.

Asymmetric replication
Copies are not equal. For example, one-way rep-
lication is asymmetric. Even in the case of two-
way replication, the roles of copies may differ.
There may be a designated (master) copy having
a different role than the other copies (replicas).
The master copy may be referred to as a hub and
the other copies as spokes. We then talk about
hub-to-spoke and spoke-to-hub replication.

Symmetric replication (peer-to-peer)
A two-way replication whereby all the copies are
equal in all respects.

Additionally, in lazy replication, a question arises
about which party initiates the step of data propaga-
tion and synchronization (refresh).

Pull refresh
The node which is supposed to be updated (rep-
lica, client) initiates the refresh.

Push refresh
The node where the data change has happened
initiates the refresh.

In lazy methods, the correctness goal is eventual
consistency meaning that, in a quiescent system, all
copies are mutually consistent. If updating of more
than one copy is allowed (as in symmetric and peer-
to-peer replication), conflicting updates of inconsis-
tent copies may happen, and then reconciliation is
needed.

Reconciliation
A method to resolve conflicting updates per-
formed on different copies of the sama data. Be-
cause in lazy methods the original updating trans-
actions has been already committed, reconcilia-
tion may require compensating transactions to be
executed.

A universal correctness criterion for operating on
replicated data is called one-copy serializability. The
idea is to hide the effect of existence of copies totally
from the user:

One-copy serializability (1SR)
A correctness criterion in a replicated database
system whereby an interleaved execution of
read/write transactions operating on data item
copies is equivalent to a serial execution history
in a one-copy database [BHG87].

When a system supports one-copy serializability,
transactions produce always correct results regard-
less of application semantics, similarly to any data-
base system supporting serializable executions.
Eager replication methods are required to maintain
one-copy serializability. In eager methods, more than
one copy has to be accessed within a transaction. All
eager methods require a sort of a two-phase commit
protocol to ensure atomicity and recoverability of
distributed transactions.

A simplest synchronous replication method is called
ROWA (read one, write all) whereby all the copies
are updated in a single transaction. There exist

2

various optimizations of this basic method, e.g. by
way of quorums and voting [JM89].

Eager methods are not applicable to data recharging
in mobile environments because they require that
certain nodes (or a number of nodes) are always
available. Data recharging is based on lazy methods
described below.

3 Overview of lazy methods

3.1 Supported correctness models

The essence of lazy methods is simple: the changed
data is propagated to copies after the transaction that
had produced the changes has committed.

In lazy methods, the requirement for one-copy seri-
alizability is relaxed and weaker correctness models
are applied. The weaker the correctness model is, the
more consideration has to be given to application
semantics. This means that the application transac-
tions have to be constructed in a way preserving
application-specific consistency and possible con-
flicts have to be resolved in the application code.

Snapshot consistency
In a snapshot-consistent copy, the state of data
represents a point in a serialization order of the
original copy. This means only the effects of
transactions committed until that point are
included in the copy.

In lazy replicating systems, transaction-consistent
snapshots are offered to provide this level of consis-
tency. Many read-only applications may be satisfied
with this approach. With regard to read-only transac-
tions, this consistency level is called strong consis-
tency [GW82]

An attempt to update the replicated data in a consis-
tent way may require a reconciliation step.

Weak (view) consistency
Weak consistency was introduced in the context
of read-only transactions [GW82, LSLH98].
Each read-only transaction is required to see a
snapshot resulting from a serialization order but
different read-only transactions may see different
orders.

Weak consistency has been proposed for wireless
read-only access [Pit98] because the required
concurrency control is less restrictive than in the case
of snapshot consistency. Updating of weakly consis-
tent replica data could require a reconciliation step,
and the reconciliation rate (number of reconciliations
in a unit of time) would be higher than that achieved
with the snapshot consistency.

Sometimes, in order to guarantee the correctness of
data access, the degree of freshness of data is of
importance. It may be required for the data to be
temporally consistent.

Temporal consistency
A temporally consistent copy reflects the state of
the original copy with some temporal accuracy;
the accuracy is expressed as a time interval like 1
s, 5 min, etc.

A typical way to achieve temporal consistency is to
have snapshot copies refreshed every given time
interval (push replication) or when the copy is about
to be used and it is considered to be too old, by
requesting the refresh from the application (pull rep-
lication).

Semantical consistency
An execution of interleaved transactions produce
a semantically consistent database (including
copies) if the application's integrity rules are
satisfied at all times (despite the fact that the exe-
cution is non-serializable).

In semantically consistent databases we deal with
semantical transactions using weakened (non-serial-
izing) concurrency control (for example global locks
are not acquired for data items) but the transactions
include application-specific integrity checks. Some
of the semantical copy consistency rules may be
generalized, for example in the form of commutative
operations [KS88] (like increments and decrements
that may be executed in any order) or in terms of
epsilon-consistency [PL91] (which is an allowed
value difference between the master item value and
the replica item value)

3.2 Management models

From the point of view of how much control a user
has over the process of replication, different methods
may be applied.

Ad-hoc replication
A node (a client) may request a copy of data base
objects or a view thereof dynamically. This re-
sults in a local materialization of a global view.
Because no information about the copy is stored
anywhere centrally, refreshing the copy is the
responsibility of a client. For the same reason, the
copy is for read-only use only.

Schema-based static replication
The configuration of copies is defined in a cen-
tralized (or master) database schema, for exam-
ple, in connection with the CREATE TABLE
statement or with a separate CREATE
SNAPSHOT statement. Because the information

3

about the copy is available to the master, all
forms of replication (one or two-way, eager or
lazy, etc.) are possible to implement. Although
the model is called "static", the configuration may
be altered dynamically if the corresponding
dynamic DDL statements exist.

Publish/Subscribe replication
This is the most dynamic usage model. Typically,
publications are named schema objects created
dynamically at masters and they are subscribed to
at replicas. In terms of data, publications are col-
lections of table views, and subscriptions are, in
turn, views of publications. Because all the nec-
essary information is available at both masters
and replicas, all forms of replication could be
applied. In practice, the model is mostly used in
lazy replication schemes.

3.3 Update models

In lazy methods, the immediate one-copy serializa-
bility is given away. Instead, the goal is to achieve
snapshot and temporal consistency for all copies. A
sufficient condition for maintaining snapshot consis-
tency is that the updates are propagated, transaction-
ally, to copies in an established global order. The
following classes of update models are ordered
according to the increased need for reconciliation.

Lazy master (lazy primary copy)
Update transactions are allowed to use only a
designated copy (master) for both reads and
writes. The serialization order is established at
the master. The changes are propagated in a
snapshot-consistent way to other copies that may
be accessed by local read-only transactions only.
The consistency level supported in the secondary
copies (replicas) is: snapshot and temporal (if the
refresh mechanism is time-sensitive). Because no
updates are run at replicas, no reconciliation is
needed.

Base transaction (two-tier)
The method was proposed in [GHOS96]. The
nodes are divided into base nodes (always con-
nected) and mobile nodes (weakly connected).
There are two transaction types: base transactions
are run in the ROWA fashion involving any num-
ber of base nodes and at most one mobile node.
They can be run when the mobile node is con-
nected. This results in a similar consistency as in
the lazy master method above (with the generali-
zation that master data may be partitioned or rep-
licated among the base nodes). When the mobile
node is not connected, tentative transactions on
the mobile node are run using existing local
copies of master data. When the node becomes
connected, the same transactions are run as base

transactions. When they fail (conflicts are de-
tected), reconciliation is needed.

The advantage of base transactions over the basic
lazy master method is in that the access to the master
node is not required if it is unavailable. The disad-
vantage is that reconciliation is needed.

Lazy replica
In this approach, the update transaction runs at a
replica node alone. After that, the data changes
are propagated to the master for conflict checking
and reconciliation. The next step is to refresh
other replicas in the lazy master fashion. The
originating replica has to be refreshed, too, if
reconciliation happened.

The advantage of the lazy replica method is that no
distributed transactions are needed. The disadvantage
is that any transaction may be later compensated
(reverted). The lazy replica model is widely sup-
ported in commercial database systems.

Intelligent transaction
This Solid-originated method is a variation of the
lazy replica method. Here, instead of pure data
propagation, replica transactions are re-executed
at the master (similarly to base transactions—
although base transactions are executed at repli-
cas). Each replica transaction (corresponding to
the tentative transaction, in the base transaction
method) is paired with a semantically identical
master transaction that is shipped to master for
execution, following the local execution. Conflict
detection and reconciliation are performed at the
master. Both conflict checking and reconciliation
are encoded in the transaction by way of stored
procedures. Once the master transactions are run
successfully, the change propagation to other
nodes is done in the lazy master fashion.

The advantage of the intelligent transaction method
over the base transaction method is that there are no
distributed transactions in the former one. This
results in shorter transaction execution times and
better data availability. Another advantage is a more
permissive recovery model (meaning recovery from
node and connection failures). With base transac-
tions, recovery is based on a recoverable commit
protocol (like two-phase commit) with the effect that
a connection failure may result in a transaction abort.
In the intelligent transaction method, the communi-
cations between the nodes is based on a recoverable
message passing mechanism. In the case of connec-
tion failures, no transactions are aborted; instead,
messages are retransmitted. This approach works
better with weakly connected environments. On the
other hand, the disadvantage of intelligent transac-
tion is that the originating replica has to be refreshed

4

to see the effect of conflict checking and reconcilia-
tion.

The advantage of intelligent transactions over the
lazy replica method is that it suits better the semantic
reconciliation model: the conflict checking and rec-
onciliation code may be associated with each trans-
action separately.

Lazy group update
In this true peer-to-peer (symmetric) approach,
any copy may be updated, and then the change is
propagated directly to all the other copies.

If there are N copies of a logical data item, there may
be N-1 reconciliation steps required. In [KD01], lazy
group update was compared with lazy master update.
It was shown that lazy master update scales much
better with the growing number of copies. In lazy
group update, because there is no protocol for con-
sensus reaching, reconciliation rules are limited to
very simple ones (like that a dedicated copy wins
always, or the latest update wins always). Otherwise,
snapshot consistency may be lost. For example, in
Lotus Notes, lazy group update is implemented using
the "latest one wins" rule. If there is no way of order-
ing globally the updates (usually, there is no), the
conflict probability is much higher than with any
master-based solution (because the master serializes
the updates).

In addition to poor scalability and limited reconcilia-
tion possibilities, another disadvantage is poor man-
ageability: At all times all the copies have to be
aware of all the other copies. Therefore the approach
is not suited for dynamically changing copy configu-
rations. Additionally, the push approach has to be
used to propagate data. Still, there is no way, for a
copy, to ensure its own snapshot consistency at will
(the system is deluted [GHOS96] for an unspecified
period of time).

All the above deficiencies make the lazy group ap-
proach inapplicable to data recharging. Generally,
any approach using the master copy concept (lazy
master, base transactions and Intelligent Transac-
tions) is more manageable, more scalable and more
secure in the sense of eventual consistency than the
lazy group approach.

3.4 Strategies for one-way refresh

One-way refresh is present in many eager and lazy
replication methods. In one-way refresh, there is a
designated copy called master. Refreshing means
applying changes to secondary copies (replicas).

For read-only data access, or read-only data re-
charging, one-way refresh (with a given consistency)
is the only method required.

Full refresh
The full contents of the logical copy is retrieved
from the master and applied to the replica each
time a refresh is done.

Understandably, the approach bears performance
penalty and is applicable only to a limited number of
cases. These are:
• There is no other way to do it (as is the case with

ad-hoc replication).
• The data in question change vary rarely.
• Much of the data in the logical copy changes at

the same time.

Other refresh techniques are much more efficient.

Log-based refresh
Incremental changes to data are retrieved from
the transaction log (the process called "log sniff-
ing") and applied, transaction by transaction or as
a batch update, to replicas

With log sniffing, various schemes are possible: both
push and pull and of various granularity. The method
may be tuned to be a very efficient one. The problem
with the method is that it requires a complex system
to maintain the log-based information. The source of
information is the so-called redo log that is not kept
in the system for a very long time: essentially, once
the effects of a transaction have been permanently
stored to disk, the transaction may be removed from
the redo log. Consequently, the log-based replica
change information has to be moved to another sub-
system being, in fact, a persistent queue system to
maintain series of updates for various replicas in a
recoverable way. This explains the fact that, in many
products, the refresh activity is performed with a
separate synchronizer process.

Transaction-wise refresh
A method typically implemented with log sniffing
whereby the updates are propagated (pushed)
immediately after each transaction commit.
Called often transactional replication, in com-
mercial products.

With transaction-wise refresh, the aim is to have the
copies refreshed as fast as possible, to improve tem-
poral consistency. The disadvantage is a high mes-
sage traffic because the results of each transaction
are sent separately.

Differential refresh
In this approach, the minimum necessary data

5

change (delta), since the previous refresh, is cal-
culated and applied to each replica.

A lot of research has been done with respect to opti-
mizing differential refresh, starting for the times
materialized views were used in centralized systems
[AL80]. For example, the log-sniffing approach may
be optimizing with the compressing the log to re-
move the intermediate changes [KR87]. In [Lind86],
characteristics of a good differential method were
proposed:
• All changes have to be detected
• Impact on the base (master) table should be

minimal
• Should transmit as little data as possible
• Multiple snapshots (independently refreshable)

of the same data should be available
• Each snapshot may have its own restriction and

projection

Another consideration in a multi-node system is that
when all the replication information is available at
the master, both pull and push implementation is
possible. In the case some of the information is
available only at the replica, only the pull model may
be feasible (such is the case of the Solid's solution).

On the other hand, the less replica-specific state
information is stored with the master, the better the
system scales to high numbers of replicas. The
authors of [Lind86] proposed a highly efficient
refreshment method based on the principle, that it is
the replica that stores its version information. In this
respect, Solid uses a similar scheme.

3.5 Conflict detection and reconciliation

3.5.1 Conflict detection

In lazy replication, conflicting updates may be made
to different copies of the same object. Because the
conflicts can not be resolved at the transaction time
(the transaction performed on the copy has been
already committed), the conflicts have to be detected
afterwards. An exception is the lazy master method
whereby the conflicts are handled by the concurrency
control mechanism at the master, and transactions are
serialized at commit time.

The typical methods of conflict detection are:
1. Version (or timestamp) based detection: if two

transaction have intersecting read or write sets,
versions of intersecting items are compared. If
the timestamps of read items do match, a con-
flict arises. Also, if the original version of the
updated item does not match the version in the
copy, there is a conflict. Some methods use

update versions only, and then weak consistency
is supported only (different nodes may reflect
different serialization orders).

2. Read and write set comparison: if, when apply-
ing the transaction results to a copy, the read set
does not match with the values in the copy or the
initial values of the write set do not match with
the values in the copy, the attempted transaction
conflicts with some local transaction.

3. Semantic conflict checking: instead of a general
mechanism, application-specific code is used to
check for inconsistencies.

Generally, semantic checking is more permissive
than general methods. For example, commutative
operations may be allowed to be applied in different
orders at different sites. Examples of commutative
operations are increment/decrement or insertion. The
freedom of ordering applies only to operations within
the same commutative class, e.g. increment/decre-
ment.

3.5.2 Reconciliation

There are several ways to deal with copy conflicts. In
any case, resolution of the conflict involves a com-
pensating transaction executed at the site of a copy.
The compensating transaction may remove the
effects of some transaction or/and do additional data
modification (like changing the values of state or
validity columns).

Basic reconciliation methods
When a conflict is detected, some of the constant,
pre-programmed rules are applied. The examples
include:

• the later/earlier transaction wins
• the one with a higher priority wins (needs a pri-

ority assignment system)
• the transaction propagated by the master (or any

special node) wins
• the transaction performed by a special

user/program wins.
• the bigger value wins
• the smaller value wins

Semantic reconciliation
Here, a special preprogrammed application-spe-
cific code performs the compensating transaction.
The code may be shipped with the transaction or
may reside in the node. Technical means are pro-
cedures and triggers.

In systems using designated master copies, the fre-
quency of reconciliation may be reduced by per-
forming the reconciliation at the master.

6

Master reconciliation
The data consistency at the master is ensured by
way of conflict checking, and reconciliation, per-
formed after the original transaction has commit-
ted at some replica. Conflict resolution may result
in a (nested) compensation transaction that may
revert some of the original operations and per-
form additional operations.

After the step of master reconciliation, the data is
considered to be serialized at the master. For the
copies (replicas), the step of snapshot refresh may be
applied, then.

3.6 Scalability issues

Scalability of eager and lazy methods were analyzed
in [GHOS96]. Lazy methods scale up better than the
eager ones. Further, there are various ways to
improve the scalability of lazy methods even more.
The following factors contribute to better scalability:
• Simple transactions: the less actions a transac-

tion has the better.
• Pull is better than push because fewer nodes

participate in the synchronization, in a unit of
time (assuming only clients needing the data do
the pull).

• Differential refresh is better than transaction-
wise because fewer messages are exchanged.

• The more master updates the better: less recon-
ciliation is needed.

• Master-based methods scale better than lazy
group update or any group-oriented method.

4 Data recharging requirements

4.1 Architecture

The area of data recharging is inclusive of the gen-
eral data replication area.

Mobile net
Internet

(stationary
network)

Stationary nodes
(Servers)

Mobile nodes
(Clients)

Fig. 1: General architecture of a data recharging system.

The special characteristic of the data recharging
environment (Fig. 1) is the distinction between the
stationary and mobile networks and between station-

ary nodes (called servers) and mobile nodes (clients).
Contrary to the traditional client/server model, both
clients and servers may play passive and active roles.
The major difference between them is that servers
are fully connected and are reliable entities having
consistent data, while clients need be neither of the
above. The ramifications of data recharging are
summarizes below.

4.2 Read-only access
• Any data item is accessible locally, at the client.
• Scales up to thousands of clients.
• Produces strongly or weakly consistent copies,

also in the presence of connection failures.
• The refresh method is optimized to move a mini-

mum amount of data needed to achieve a re-
quired level of consistency.

• The refresh method is optimized so that the
more time is available the better copy consis-
tency is achieved.

• The content of the data recharge is easily adjust-
able to application needs, and may be controlled
with a user, device or location specific profile.

• It is possible to automate the data recharge proc-
ess.

4.3 Updating client data

If the recharged data is supposed to be updateable
(two-way data recharging), the following capabilities
are required:
• Conflict detection and reconciliation.
• Different levels of consistency for read-only and

updateable data.

4.4 Target platforms for embedding

Mobile environments bring diversified device and
system platforms at both the server and client side. A
major problem a developer faces is how to ensure
that an application system will run on all required
devices. In addition to general program transport-
ability to different mobile device, one must ensure
that the data recharging platform runs seamlessly on
both server and client devices of different types and
under different operating systems. Typical server
platforms are Windows, Linux and various flavors of
UNIX. On the client site the platform palette is rap-
idly changing as new solutions are proposed. More
established ones are Symbian (known also as EPOC),
VxWorks and Pocket PC. To implement a data
recharging platform, a whole product family (or a
highly scalable and transportable product) is needed

7

to satisfy the platform requirements. Several database
vendors offer already such product families.

Because of the intrinsic complexity of the replication
algorithms, current commercial replication solutions
are based on proprietary protocols. The emerging
replication interoperability standard SyncML1 is,
however, a promise of heterogeneous data recharging
of the future.

5 Using commercial products for
data recharging

5.1 Non-database products

There is a class of products representing replication
middleware. They enable to move data between data
repositories at different nodes, including mobile
nodes, but do not include the data repositories (data-
bases) themselves. Examples are Pumatech's Sync-It,
Fusion One's Internet Sync, ITA's Mobile/DB and
Starfish's TrueSync.

The middleware products usually connect to data-
bases via ODBC. Because they do not have access to
internals of database systems, they do not offer any
built-in consistency-preserving or reconciliation
mechanisms.

5.2 Database products

Most major database vendors have included data
replication capabilities in their products. This is true
for traditional vendors like Oracle, IBM, Microsoft,
Sybase, CA and also newcomers like Birdstep and
PointBase. Also Solid offers an embeddable database
engine with replication capabilities.

5.2.1 Correctness models

For read-only data, weak consistency is sufficient.
However, for updateable data, snapshot consistency
is preferable if data items are to be updated at differ-
ent locations in the same time. Without snapshot
consistency, the reconciliation rate would rise
because of incompatible transaction ordering at dif-
ferent nodes.

Most of the products offer snapshot consistency and
some offer weak consistency.

5.2.2 Management model

Given the dynamic environment of mobile comput-
ing, the publish/subscribe model (offered by, among

1 http://www.syncml.org/

others, Microsoft and Solid) yields best to the
requirement of adjustable data recharging. Applica-
tion-specific publications may be created at different
servers and may be subscribed to, dynamically, by
the clients. Additionally a capability to further
restrict the publications for each client separately (as
in Solid's Flow Engine) reduces the amount of data
sent to a device.

5.2.3 Update model

The model chosen to deal with updateable data has to
be robust and flexible enough. The most promising
are the lazy replica model and Solid's Intelligent
Transaction because they do not require any long-
term connection to any stationary node.

5.2.4 Refresh strategy

Because the bandwidth of a mobile connection is
narrower than that of a stationary connection, the
amount of data transferred should be minimized.
Thus, differential refresh is preferable, and it is
available in many database products.

Both the pull and push refresh approaches may be
used. Typically, database products include either of
them or both.

The push-based refresh (Fig. 2) has the advantage
that the Client does not need to take any action. The
deficiencies are (1) the overhead imposed by the
refresh process when the client does not need the
data, (2) difficulty to adjust the time granularity of
the refresh (e.g. should it be done once per hour or
after every data change?), (3) violation of the client's
autonomy (the refresh is forced on the client) and,
finally, (4) it assumes the client is connected (or a
persistent queue system has to be developed to
support disconnected clients).

Server Client
data
change Refresh data

Fig 2: Push-based refresh.

The pull-based model (Fig. 3) has the advantage that
the client may optimize the use of refresh, and the
model scales better with the growing number of
clients. The problem is that the client does not know
when to refresh.

Server Client
data
change

Request refresh

Refresh data

Fig. 3: Pull-based refresh.

8

In order to combine the best of the two worlds, Solid
is introducing the push-pull model in the upcoming
Flow Engine Version 4.0 (fig. 4).

Server Client
data
change

Request refresh

Refresh data

Notify about change

Fig. 4: Push-pull refresh model.

In this model, the server sends lightweight notifyca-
tions to the clients about the relevant data changes
(i.e. changes to subscribed publications). The clients
may decide on their own, on the basis of the applica-
tion state, when to refresh. The actual refresh is done
in the pull mode.

5.2.5 Conflict detection and reconciliation

When recharged data is updated at clients, we deal
with the following cases:
A. This client is the lone update location for the

item. The data may be propagated to some
server without the need of conflict checking.

B. There are other locations where the item may be
updated in the same time. The updated data has
to be submitted for conflict checking, preferably
to a server node (because of the local consis-
tency and stability). If the reconciliation is
needed, it may be performed at any location but
the results have to be propagated back to the
location of the original update.

Commercial database products offer an array of basic
conflict checking and reconciliation methods. Some
of the built-in reconciliation rules may be useful.
Still, they are not enough because application
semantics may require still a different way to recon-
cile. Also built-in methods to detect serialization
conflicts may be too restrictive for some applica-
tions. Therefore it is important that both conflict
detection and reconciliation are fully programmable.
In most products this goal is achieved with database
triggers and stored procedures. Solid offers Intelli-
gent Transactions to satisfy both needs.

6 Research in data recharging

There had been research activities serving the needs
of data recharging even before the term data re-
charging was coined. For example the work on read-
only transactions (as in [LSLH98]) and weak consis-
tency are applicable as such to data recharging.
Lately, new replication protocols have been proposed
for strong and weak consistency of disseminated

data. They include a method based on dividing data
into internally consistent clusters [PB95], sending
multiversion values to clients [Pit98] and using
broadcast disk technology [PC99]. The refresh algo-
rithms have been also generalized [PMS01].

Lately, a new class of update methods called epi-
demic protocols [RGK96, AAS97] have been intro-
duced. Epidemic protocol is an improvement of the
lazy group update method. The update propagation is
handled in pair-wise way until all the copies are mu-
tually consistent. To maintain the information about
versions of different copies, each copy caries a ver-
sion vector and acts upon it (propagates the updates
further on). The propagation process ceases, when all
version vectors represent a consistent state.

The advantage of the epidemic method is in that it is
more manageable than the basic lazy group update (it
adapts to a changing copy configuration) an enables
for more complex reconciliation (various levels of
consistency may be achieved). However, all the other
disadvantages of the lazy group update method are
retained.

An issue that has surfaced lately is a profile-based
data dissemination [CFZ01]. A framework for proc-
essing user profiles (i.e. a profile definition language
and engines to process it) would enable to tune data
recharging to current user needs that may depend
also on the processing context and physical location.

The issues of context and location awareness are, in
turn, dealt with in pervasive computing projects like
HP's CoolTown2.

7 Conclusions

We have surveyed data replication technology ap-
proaches from the point of view of data recharging in
mobile devices. Because of weak connectivity, data
recharging is based on lazy replication methods with
a special stress on highly scalable models. Such are
the lazy replica update model and a refinement
thereof, the Intelligent Transaction. In terms of re-
fresh models, both pull and push approaches are
possible, and the combined push/pull approach is
promising, too. In the research field, still more effi-
cient update and refresh methods are sought, and
grounds for ubiquitous, context and location sensi-
tive data recharging are being prepared.

2 http://www.cooltown.hp.com/

9

References
[AAS97] D. Agrawal, A. El Abbadi, R.C. Steinke.

Epidemic Algorithms in Replicated Da-
tabases. Proc. ACM PODS'97: 161-172.

[AL80] Michel E. Adiba, Bruce G. Lindsay.
Database Snapshots. VLDB 1980: 86-91.

[BHG87] Philip Bernstein, Vassos Hadzilacos,
Nathan Goodman.. Concurrency control
and recovery in database systems. Addi-
son-Wesley Publishing Company, 1987.

[CFZ01] Mitch Cherniack, Michael J. Franklin,
Stan Zdonik. Expressing User Profiles
for Data Recharging. IEEE Personal
Communications, August 2001, 6-13.

[GW82] Hector Garcia-Molina, Gio Wiederhold.
Read-Only Transactions in a Distributed
Database. TODS 7(2): 209-234 (1982).

[GHOS96] J. Gray, P. Helland, P. O'Neil, D. Sasha.
The Dangers of Replication and a Solu-
tion. Proc. ACM SIGMOD 1996: 173-
182.

[JM89] Sushil Jajoda, David Mutchler. Dynamic
voting. Proc. ACM SIGMOD 1987: 227-
234.

[KD01] Vinay Knitkar, Alex Delis. Time Con-
strained Push Strategies in Client-Server
Databases. Distributed and Parallel Data-
bases, Vol. 9, no.1, (Jan 2001): 5-38.

[KR87] Bo Kähler, Oddvar Risnes. Extending
Logging for Database Snapshot Refresh.
VLDB 1987: 389-398

[KS88] Akhil Kumar, Michael Stonebraker.
Semantics Based Transaction Manage-
ment Techniques for Replicated Data.
Proc. ACM SIGMOD 1988: 117-125.

[Lind86] Bruce G. Lindsay, Laura M. Haas, C.
Mohan, Hamid Pirahesh, Paul F. Wilms.
A Snapshot Differential Refresh Algo-
rithm. ACM SIGMOD 1986: 53-60.

[LSLH98] Kwok-Wa Lam, Sang Hyuk Son, Victor
C. S. Lee, Sheung-lun Hung. Using Sepa-
rate Algorithms to Process Read-Only
Transactions in Real-Time Systems.
RTSS 1998: 50-59.

[PB95] Evaggelia Pitoura, Bharat K. Bhargava.
Maintaining Consistency of Data in
Mobile Distributed Environments.
ICDCS 1995: 404-413.

[PC99] Evaggelia Pitoura, Panos K. Chrysanthis.
Exploiting Versions for Handling
Updates in Broadcast Disks. VLDB
1999:114-125.

[Pit98] Evaggelia Pitoura. Supporting Read-Only
Transactions in Wireless Broadcasting.
DEXA Workshop 1998: 428-433

[PL91] Calton Pu, Avraham Leff. Replica Con-
trol in Distributed Systems: An Asyn-
chronous Approach. Proc. ACM
SIGMOD 1991: 377-386.

[PMS01] Esther Pacitti, Pascale Minet, Eric Simon.
Replica Consistency in Lazy Master
Replication Databases. Distr. And Paral-
lel Databases 9(3): 237-267 (May 2001).

[RGK96] M. Rabinovich, N.H. Gehani, A Ko-
nonov. Scalable Update propagations in
epidemic replicated databases. Proc.
EDBT'96: 207-222.

Web pointers to product pages

Fusionone: Synch Server
http://www.fusionone.com

Pumatech: Intellisync
http://www.pumatech.com

ITA: MobileDB
http://www.itacorp.com

Starfish: TrueSync
http://www.starfish.com

Birdstep: Birdstep
http://www.birdstep.com

Pointbase: PointBase, Unisync
http://www.pointbase.com

IBM: DB2, Informix
http://www.ibm.com

Microsoft: SQL Server 2000, SQL Server 2000 CE
http://www.microsoft.com/sql

Oracle: Oracle 8i Lite, iConnect
http://www.oracle.com/mobile

Sybase: iAnywhere, UltraLite
http://www.sybase.com

Computer Associates: Ingres II
http://ca.com/products/ingr.htm

Solid: Flow Engine
http://www.solidtech.com/

10

http://www.fusionone.com/
http://www.pumatech.com/
http://www.itacorp.com/
http://www.starfish.com/
http://www.birdstep.com/
http://www.pointbase.com/
http://www.ibm.com/
http://www.microsoft.com/sql
http://www.oracle.com/mobile
http://www.sybase.com/
http://ca.com/products/ingr.htm
http://www.solidtech.com/

	I
	Introduction
	Concepts of data replication
	Overview of lazy methods
	Supported correctness models
	Management models
	Update models
	Strategies for one-way refresh
	Conflict detection and reconciliation
	Conflict detection
	Reconciliation

	Scalability issues

	Data recharging requirements
	Architecture
	Read-only access
	Updating client data
	Target platforms for embedding

	Using commercial products for data recharging
	Non-database products
	Database products
	Correctness models
	Management model
	Update model
	Refresh strategy
	Conflict detection and reconciliation

	Research in data recharging
	Conclusions
	References

