' A WestWorld Productions, Inc.
2l Publication

Volume 7 ¢ Issue 2

STORAGE MANAGEMENT

SOLUTIONS®

C

P 2=

i

N Rep argln

ith mobile devices,

data recharging

is analogous to

power recharging.
Just as a battery runs out of power,
a mobile device can run out of fresh
data. Data recharging to refresh
(update) the data cache should
be as transparent to the user
as possible. Ideally, the device
data recharges, either automatically
without consent or with minimum
user action, whenever a network con-
nection is established. For example, a
user might simply connect to a net-
work jack or press a button to accept
a wireless connection.

Anolyifehaglics Ation to D3 a
n I\/Ioblle Sys rr\

By Antoni Wolski

At the core of data recharging are
data replication techniques. Data
replication has satisfied various
needs over the years, from speeding
up query processing with material-
ized views to improving data avail-
ability and fault tolerance. A subset
of replication methods is applicable
to mobile environments. Embedding
such methods into both the station-
ary and mobile devices of a system
would provide a distributed, mobile
data-recharging platform to facilitate
data recharging for applications at
no additional development cost.

Database products used in data

/

.d'"

replication mechanisms are good
candidates for inclusion in a data-
recharging platform. However, they
must meet the special standards of
scalability, data consistency, and
manageability required in mobile
environments.

DATA REPLICATION VERSUS
SYNCHRONIZATION

The notion of data replication has
many facets. Over time, different
replication technologies have sur-
faced to satisfy emerging needs, and
even today, the meaning of the term
will depend on context. In some
cases, the term “synchronization” is

synonymous with replication.
However, we shall see that the term
“replication” has a broader meaning.

Replication: A method used to copy
data in order to use that copy instead
of the original data.

Synchronization: A process or a
method used to make copies mutual-
ly consistent. Some replication meth-
ods need synchronization, while
others do not. Generally, synchro-
nous replication synchronizes
copies within the boundaries of
updating transactions, and no addi-
tional synchronization is needed.
Syn-chronous methods guarantee
the same level of transaction execu-
tion correctness as if there were only
one copy of data. On the other hand,
asynchronous replication typically
updates only one copy, and a
separate step of copy synchroniza-
tion is necessary.

Eager (synchronous) replication: A
replication method utilizing a trans-
action processing system to maintain
immediately consistent copies.

Lazy (asynchronous) replication: Any
method that is not synchronous; a
separate synchronization method
might be needed. One can see
that eager methods are associated
with transaction-capable systems.
Conversely, in the absence of a trans-
action processing system, we deal
with a great variety of lazy methods.
Among various topologies of lazy
replication, the most important
distinction is the number of update-
able copies.

One-way replication: All updates are
applied to a designated primary
copy. The changes are then propa-

gated to a number of secondary read-
only copies.

Two-way replication (update any-
where): Updates can be applied to
any copy. Sometimes a special dis-
tinction is made about an arrange-
ment of copies, especially when they
are not equal.

Asymmetric replication: A replica-
tion in which copies are not equal, as
in one-way replication. Even with
two-way replication, however, a desig-
nated copy (master) might have a
very different role than the other
copies (replicas). When the master
copy is called a hub and the other
copies spokes, we can then talk about
hub-to-spoke and spoke-to-hub repli-
cation.

Symmetric replication (peer-to-
peer): A two-way replication whereby
all copies are equal in all respects.

Pull refresh: The node to be updated
(replica, client) initiates the refresh.

Push refresh: The node at which
data has changed initiates the
refresh.

In lazy methods, the correctness
goal is eventual consistency. This
means that, in a quiescent system,
all copies are mutually consistent. If
updating more than one copy is
allowed (as in symmetric and peer-
to-peer replication), conflicting
updates by inconsistent copies
might occur, thus requiring recon-
ciliation.

Reconciliation: A method used to
resolve conflicting updates on differ-
ent copies of the same data. Because in
lazy methods the original updating

transactions have already been com-
mitted, reconciliation might require
compensating transactions. A universal
correctness criterion for operating on
replicated data is called one-copy seri-
alizability. The idea is to hide the exis-
tence of multiple copies from the user:

One-copy serializability (1SR): The
interleaved execution of read and
write operations on individual data
items is equivalent to a serial history
with only one copy per data item (a
one-copy database) [BHG87]. When
a system supports one-copy serializ-
ability, transactions produce always-
correct results regardless of applica-
tion semantics, similar to any data-
base system supporting serializable
executions. Eager replication meth-
ods are required to maintain one-
copy serializability. In eager methods,
more than one copy must be accessed
within a transaction. All eager meth-
ods require a sort of two-phase com-
mit protocol to ensure atomicity (all
or nothing) and recoverability of dis-
tributed transactions.

Eager methods are not compatible with
data recharging in mobile environ-
ments because they require that cer-
tain nodes (or number of nodes) be
always available. Data recharging
relies on the lazy methods described
in the next section.

OVERVIEW OF LAZY METHODS

Supported correctness models:
The essence of lazy methods is sim-
ple: the changed data is propagated
to copies after the transaction that
had produced the changes had com-
mitted. In lazy methods, the require-
ment for one-copy serializability is
relaxed and weaker correctness
models are applied. The weaker the
correctness model, the more consid-

eration has to be given to applica-
tion semantics. Application transac-
tions must preserve application-spe-
cific consistency, and possible con-
flicts must be resolved in the appli-
cation code.

Snapshot consistency: In a snapshot-
consistent copy, the state of data rep-
resents a point in a serialization order
of the original copy. Only those trans-
actions committed until that point
are included in the copy. In lazy repli-
cating systems, transaction-consistent
snapshots provide the level of consis-
tency necessary to satisfy many read-
only applications. When referring to
read-only transactions, this consisten-
cy level is called strong consistency.
An attempt to update the replicated
data in a consistent way might
require a reconciliation step.

Weak (view) consistency: Weak con-
sistency first appeared in the context
of read-only transactions. Each read-
only transaction sees a snapshot
resulting from a serialization order,
though different read-only transac-
tions may access different orders.
Weak consistency has been proposed
for wireless read-only access because
the required concurrency control is
less restrictive than in the case of
snapshot consistency. Updating weak-
ly consistent replica data could
require a reconciliation step, and the
reconciliation rate (number of rec-
onciliations per unit of time) would
be higher than that achieved with the
snapshot consistency. Sometimes, in
order to guarantee the correctness of
data access, the freshness of data is
important, and data might need to be
temporally consistent.

Temporal consistency: A temporally
consistent copy reflects the state of the

original copy with some temporal accu-
racy, expressed as a time interval such
as one second or five minutes.
To achieve temporal consistency, snap-
shot copies are often refreshed at spe-
cific intervals (push replication).
Alternatively, the user may request a
refresh from the application (pull repli-
cation) when the copy is old and
requires an update before use.

Semantical consistency: An execution
of interleaved transactions produces a
semantically consistent database
(including copies) if the application’s
integrity rules are satisfied at all times.
(This is true, despite the fact that the
execution is non-serializable.)
Though semantically consistent data-
bases deal with semantical transac-
tions using weakened (non-serializ-
ing) concurrency control (global
locks are not acquired for data items,
for example), the transactions include
application-specific integrity checks.
Some of the semantical copy consisten-
cy rules may be generalized.
Commutative operations (KS88)—
including increments and decre-
ments—may be executed in any order,
or epsilon-consistency (PL91) may allow
differences between the master item
value and the replica item value.

MANAGEMENT MODELS

We can look at the process of
replication in relation to the
degree of control the user has
over the process.

Ad-hoc replication: A node (a
client) may request a copy of database
objects or a dynamic view thereof. This
results in a local materialization of a
global view. Because no information
about the copy is stored anywhere cen-
trally, refreshing the copy is the respon-
sibility of a client. For the same reason,

the copy is strictly read-only.

Schema-based static replication: The
configuration of copies in a central-
ized (or master) database schema are
defined in connection with the “cre-
ate table” statement or with a separate
“create snapshot” statement. Because
the information about the copy is
available to the master, all methods of
replication (one- or two-way, eager or
lazy, etc.) are possible. Although the
model is called “static,” the configura-
tion may be altered dynamically if cor-
responding dynamic DDL (data defi-
nition language) statements exist.

Publish/subscribe replication:
This is the most dynamic usage model.
Typically, users subscribe to publica-
tions (schema objects) that are created
dynamically at masters. Publications
are essentially collections of table
views, and subscriptions are, in turn,
views of publications. Because all the
necessary information is available at
both masters and replicas, any method
of replication could be applied. In
practice, however, this model is used
primarily in lazy replication schemes.

UPDATE MODELS

In lazy methods, the immediate one-
copy serializability gives way to snap-
shot and temporal consistency for
all copies. To maintain snapshot
consistency, updates are propagat-
ed, transactionally, to copies in an
established global order. The follow-
ing classes of update models are list-
ed according to their increasing
need for reconciliation.

Lazy master (lazy primary copy):
Update transactions use only a desig-
nated copy (master) for both reads
and writes. The serialization order is
established at the master, and

changes are propagated in a shap-
shot-consistent way to other copies
that may be accessed by local read-
only transactions. The consistency
level in the secondary copies (repli-
cas) is snapshot and temporal (if the
refresh mechanism is time-sensitive).
Because no updates run at replicas,
no reconciliation is needed.

Base transaction (two-tier): This
method (GHOS96) differentiates
between base nodes (always connect-
ed) and mobile nodes (weakly con-
nected). Base transactions run in the
synchronous fashion, involving any
number of base nodes and, at most,
one mobile node. The consistency
that results is similar to that of the lazy
master method above (with the gen-
eralization that master data may be
partitioned or replicated among the
base nodes). When the mobile node is
not connected, tentative transactions
use existing local copies of master
data. When reconnected, the tentative
transactions are re-run as base trans-
actions. If any conflicts are detected,
reconciliation is needed. The advan-
tage of the base transaction method
over the basic lazy master method is
that tentative transactions can run
even when the master node is unavail-
able. The disadvantage of the base
transaction method is the need for
reconciliation.

Lazy replica: In this approach, the
update transaction runs only at a
replica node. Data changes are later
propagated to the master to check
for conflicts and reconcile if neces-
sary. Next, the master refreshes
other replicas in the lazy master
fashion. The originating replica
must also be refreshed if reconcilia-
tion occurred. The advantage of the
lazy replica method is that it

requires no distributed transactions.
The disadvantage is that a transac-
tion may later be reverted or com-
pensated. The lazy replica model is
widely supported in commercial
database systems.

INTELLIGENT TRANSACTION

For example, Solid’s Intelligent
Transaction technology is a variation
of the lazy replica method. Instead of
pure data propagation, replica trans-
actions are re-executed at the master.
Following local execution, each
replica transaction is paired with a
semantically identical master transac-
tion that is shipped to master for exe-
cution. Conflict detection and recon-
ciliation are performed at the master
and are encoded in the transaction
through stored procedures. Once
the master transactions run success-
fully, the change propagation to other
nodes is accomplished in the lazy mas-
ter fashion. Unlike the base transaction
method, Solid Intelligent Transaction
technology requires no distributed
transactions, and results in faster
execution times and better data
availability. It also allows a more
permissive recovery following node
and connection failures. With base
transactions, recovery relies on a
recoverable commit protocol (like
two-phase commit). A connection
failure, therefore, might result in
a transaction abort. Using Intelligent
Transaction technology, communica-
tions between nodes rely on a recov-
erable message-passing mechanism.
In the event of a connection
failure, no transactions are aborted;
rather, messages are retransmitted.
This approach works better in
weakly connected environments.
Intelligent Transaction technology is
superior to the lazy replica method
and better suits the semantic reconcil-

iation model, associating the conflict
checking and reconciliation code
with each transaction separately. The
originating replica, however, must be
refreshed to see the effect of conflict
checking and reconciliation.

Lazy group update: In this true peer-
to-peer (symmetric) approach, when
one copy is updated, changes are
propagated directly to all other
copies. If there are N copies of a log-
ical data item, there may be N-1 rec-
onciliation steps required. In a com-
parison of lazy group update and
lazy master update (KD01), lazy mas-
ter update scaled much better as the
number of copies increased.
Because there is no consensus-reach-
ing protocol in lazy group update,
reconciliation rules are limited to
very simple ones, such as dedicated
copies, and latest updates always
win. Otherwise, snapshot consisten-
cy might be lost.

In Lotus Notes, for example, lazy
group updates use the latest-one-
wins rule. If, as is usually the case,
there is no way to order the updates
globally, the probability of conflict
will be much higher than with any
master-based solution that serializes
the updates. In addition to poor scal-
ability and limited reconciliation,
lazy group update offers poor man-
ageability since, at all times, all
copies must be aware of all other
copies. As a result, this approach is
not suited for dynamically changing
copy configurations.

Additionally, the push approach
must be used to propagate data, and
a copy has no way to ensure its own
snapshot consistency at will—the sys-
tem is diluted (GHOS96) for an
unspecified period of time. All the

above deficiencies make the lazy
group approach unsuitable for data
recharging. Generally, any approach
using the master copy concept (lazy
master, base transactions, and
Intelligent Transactions technology)
is more manageable, more scalable,
and more secure in the sense of
eventual consistency than is the lazy
group approach.

STRATEGIES FOR ONE-WAY REFRESH
One-way refresh is present in many
eager and lazy replication methods.
In one-way refresh, one designated
copy is called the master. Refreshing
means applying changes to secondary
copies (replicas). For read-only data
access or read-only data recharging,
one-way refresh (with a given consis-
tency) is the only method required.

Full refresh: The full contents
of the logical copy are retrieved from
the master and applied to the replica
each time the copy is refreshed.
Understandably, the approach bares
performance penalty and is applicable
to only a limited number of cases:
* No other method is available
(as with ad-hoc replication).
» The data in question changes
very rarely.
* Much of the data in the logical
copy changes at the same time.
e Other refresh techniques are
much more efficient.

Log-based refresh: Incremental
changes to data are retrieved from the
transaction log (a process called “log
sniffing”) and applied, transaction-by-
transaction or as a batch update, to
replicas. This method can be highly
efficient; and with log sniffing, both
push and pull refreshes of various
granularity are possible. Log-based
refresh, however, requires a complex

system to maintain the log-based infor-
mation. The source of information,
the so-called redo log, does not
remain in the system for a very long
time. Essentially, once the effects of a
transaction have been permanently
stored to disk, the transaction may
be removed from the redo log.
Consequently, the log-based replica
change information must be moved to
a persistent queue system to maintain
series of updates for various replicas in
a recoverable way. This is why many
products use a separate synchronizer
process to accomplish the refresh.

Transaction-wise refresh: Often
called “transactional replication”
in commercial products, this method
is typically implemented with
log sniffing, whereby updates are
propagated (pushed) immediately
after each transaction commit.
Transaction-wise refresh aims to
improve temporal consistency by
refreshing copies as fast as possible.
The disadvantage is high message
traffic because the results of each
transaction are sent separately.

Differential refresh: This approach
calculates and applies the minimum
necessary data change (delta) to
each replica. A lot of research has
focused on improving differential
refresh. For example, the log-sniffing
approach may be optimized by com-
pressing the log to remove interme-
diate changes. The following are
characteristics of a sound differential
method:
 All changes must be detected.
« Impact on the base (master)
table should be minimal.
e Transmitted data should be
minimized.
« Multiple snapshots (indepen-
dently refreshable) of the same

data should be available.
» Each snapshot may have its own
restriction and projection.

Another consideration in a multi-
node system is that when all the
replication information is available
at the master, both pull and push
implementation is possible. In cases
where some information is available
only at the replica, only the pull
model may be feasible. (Such is the
case of Solid’s solution.) On the
other hand, the less replica-specific
information stored with the master,
the better the system scales to high
numbers of replicas. One highly effi-
cient refreshment method is based
on the principle that the replica
stores its own version information.
Solid uses a similar scheme.

CONFLICT DETECTION

AND RECONCILIATION

Conflict detection: In lazy replica-
tion, conflicting updates can be
made to different copies of the
same object. But, because the con-
flicts cannot be resolved at the
transaction time (the transaction
performed on the copy has been
already committed), conflicts have
to be detected afterwards. In the
lazy master method, however, the
concurrency control mechanism
handles conflicts at the master, and
transactions are serialized at com-
mit time. Conflict is detected by the
following methods:

e Version-based (or timestamp-
based) detection: If two transactions
have intersecting read or write sets,
versions of intersecting items are com-
pared. If the timestamps of read items
match, a conflict arises. In addition, if
the original version of the updated
item does not match the version
in the copy, there is a conflict. Those
methods that use update versions

exclusively support only weak consis-
tency (different nodes may reflect dif-
ferent serialization orders).

» Read and write set comparison: If,
when applying the transaction results
to a copy, the read set or the initial
values of the write set do not match
the values in the copy, the attempted
transaction conflicts with some local
transactions.

 Semantic conflict checking: Instead
of a general mechanism, application-
specific code is used to check for
inconsistencies.

Generally, semantic checking is
more permissive than general meth-
ods. For example, commutative
operations may be applied in differ-
ent orders at different sites.
Examples of commutative opera-
tions are increment/decrement and
insertion.

Reconciliation: There are several
ways to deal with copy conflicts.
Resolution of a conflict involves a
compensating transaction executed
at the site of a copy. The compensat-
ing transaction may remove the effects
of some transaction or/and modify
the data—by changing the values
of state or validity columns, for
example. When a conflict is detected,
some of the constant, prepro-
grammed rules are applied, such as
the following:

e The later (or earlier) transaction
wins.

e The transaction with a higher
priority wins. (This requires a
priority assignment system.)

e The transaction propagated by
the master (or any special node)
wins.

e The transaction performed by
a special user/program wins.

e The greater (or lower) value
wins.

In semantic reconciliation, a
special preprogrammed application-
specific code performs the com-
pensating transaction by means of
procedures and triggers.

The code may be shipped with
the transaction or may reside
in the node. In systems using
designated master copies, the
frequency of reconciliation may
be reduced by performing recon-
ciliations at the master.

In master reconciliation, master
data consistency is ensured by
conflict checking and reconciliation,
performed after the original transac-
tion has committed at some replica.
Conflict resolution may result in a
nested compensation transaction that
reverts some of the original operations
and performs additional operations.
After master reconciliation, data is
considered to be serialized at the mas-
ter. For the copies (replicas), snapshot
refresh may then be applied.

Lazy methods scale better than the
eager ones. Furthermore, various fac-
tors contribute to even better scala-
bility of lazy methods:
e Simple transactions. The fewer
actions a transaction has, the
better.
Pull refresh is better than push
refresh because fewer nodes
participate in the synchronization.
Differential refresh is better than
transaction-wise refresh because
fewer messages are exchanged.
The more master updates the
better, because fewer reconcil
iations are needed.
Master-based methods

scale

better than lazy group update
or any group-oriented method.

DATA RECHARGING REQUIREMENTS
Architecture: The area of data
recharging includes the general data
replication area.

The special characteristics of
the data-recharging environment
are the distinctions between the
stationary and mobile networks and
between stationary nodes (servers)
and mobile nodes (clients). Contrary
to the traditional client/server
model, clients and servers may play
both passive and active roles. The
major difference is that servers are
fully connected and are reliable enti-
ties having consistent data, while
clients might be neither. The ramifi-
cations of data recharging are sum-
marized below.

Read-only access:

Any data item is accessible locally,
at the client. Read-only access
scales up to thousands of clients.
Read-only access produces strongly
or weakly consistent copies, even
with connection failures. The refresh
method is optimized to move the
minimum amount of data needed to
achieve a required level of consisten-
cy. The refresh method is optimized
so that with more time available, bet-
ter copy consistency is achieved. The
contents of the data recharge are eas-
ily adjustable to application needs
and may be controlled with a user,
device or location-specific profile.

It is possible to automate the data
recharge process.

Updating client data: If the
recharged data is supposed to be
updateable (two-way data recharg-

ing), the following capabilities
are required: Conflict detection and
reconciliation, and different levels of
consistency for read-only and
updateable data.

Mobile environments bring diversi-
fied device and system platforms to
both the server and client side.
Developers face the difficult prob-
lem of ensuring that an application
system will run on all required
devices. In addition to general pro-
gram transportability among differ-
ent mobile devices, developers must
ensure that the data-recharging plat-
form runs seamlessly on both server
and client devices of different types
and under different operating sys-
tems. Typical server platforms
include Windows, Linux, and various
flavors of Unix. On the client
site, the platform palette is rapidly
changing as new solutions are
proposed. The more established
client platforms are Symbian,
VxWorks, and Windows CE. To
implement a data-recharging plat-
form, a whole family of products (or
a highly scalable and transportable
product) is needed to satisfy the
various platform requirements.
Several database vendors already
offer such product families. Because
of the intrinsic complexity of the
replication algorithms, current com-
mercial replication solutions rely
on proprietary protocols. The
emerging replication interoperabili-
ty standard SyncML, however,
promises heterogeneous data re-
charging across multiple networks,
platforms, and devices.

COMMERCIAL PRODUCTS AVAILABLE
FOR DATA RECHARGING

Non-database products. There is
a class of products representing

replication middleware. They enable
data to move between data reposito-
ries at different nodes, including
mobile nodes but not the data repos-
itories (databases) themselves.
Examples are Pumatech’s Sync-it,
fusionOne’s Internet Sync, ITA’s
MobileDB, and Starfish’s TrueSync.
Middleware products usually con-
nect to databases via ODBC (open
database connectivity). Because they
do not have access to internals of
database systems, they do not offer
built-in consistency-preserving or
reconciliation mechanisms.

Database products. Most major data-
base vendors have included data
replication capabilities in their prod-
ucts. This is true for traditional ven-
dors like Oracle, IBM, Microsoft,
Sybase, Computer Associates, and
newcomers Birdstep and PointBase.
Solid also offers an embeddable
database engine with replication
capabilities.

Correctness models: For read-only
data, weak consistency is sufficient.
However, for updateable data,
snapshot consistency is preferable
if data items are to be updated
at different locations in the same
time. Without snapshot consistency,
the reconciliation rate will rise
because of incompatible transaction
ordering at different nodes. While
some products offer weak consisten-
cy, most offer snapshot consistency.

Management model: Given the
dynamic environment of mobile
computing, the publish/subscribe
model (offered by Microsoft and
Solid, among others) best meets the
requirements of adjustable data
recharging. Application-specific pub-
lications may be created at different

servers and may be subscribed
to, dynamically, by the clients.
Additionally, restricting publications
for each client separately reduces the
amount of data sent to a device.

Update model: The model chosen to
deal with updateable data must be
robust and flexible.

Refresh strategy: Because the band-
width of a mobile connection is nar-
rower than that of a stationary con-
nection, the amount of data trans-
ferred should be minimized. Thus,
differential refresh is preferable, and
it is available in many database prod-
ucts. Both the pull and push refresh
approaches may be used, and data-
base products typically include either
of them or both. The push-based
refresh has the advantage that the
client does not need to take any
action. The deficiencies are the over-
head imposed by the refresh process
when the client does not need the
data, the difficulty in adjusting the
time granularity of the refresh and
the violation of the client’s autonomy
(the refresh is forced on the client).

Conflict detection and reconciliation:
When recharged data is updated at
clients, we deal with the following
cases:

« The client is the lone update loca-
tion for the item. The data may be
propagated to the server without the
need for conflict checking.

» The item may be updated at more
than one location in the same time.
The updated data must be submitted
for conflict checking, preferably to a
server node to maintain local consis-
tency and stability. Reconciliations
may be performed at any location,
but the results must be propagated
back to the location of the original

update. Commercial database prod-
ucts offer an array of basic conflict
checking and reconciliation meth-
ods. Though some built-in reconcil-
iation rules might be useful, they
are not sufficient because applica-
tion semantics might require a dif-
ferent way to reconcile. In addition,
built-in methods to detect serializa-
tion conflicts might be too restric-
tive for some applications.
Therefore, it is important that both

conflict detection and reconcilia-
tion be fully programmable. In
most products, this goal is achieved
through database triggers and
stored procedures. m

Antoni Wolski is the chief researcher at
Solid Tech's Solid Applied Research
Center (Mountain View, CA).

www.solidtech.com
www.syncml.org

= WestWorld
&l Productions

Reprinted by permission from the publisher of
Sorage Management Solutions Magazinee,
Volume 7, Issue 2.

For FREE subscription information, please call
310/276-9500 or reply via the World Wide Web
at http://www.wwpi.com.

©2002 West World Productions, Inc.

solid.

www.solidtech.com
info@solidtech.com

