
Performance Measurement and Tuning
of Hot-Standby Databases

Antoni Wolski and Vilho Raatikka

Solid Information Technology, Itälahdenkatu 22B, 00210 Helsinki, Finland

{first_name.last_name}@solidtech.com

Abstract. General-purpose, high-availability database systems have lately pro-
liferated to various network element platforms. In telecommunication, data-
bases are expected to meet demanding availability levels while preserving the
required throughput. However, so far, the effects of various high-availability
configurations on overall database performance have not been analyzed. In this
paper, the operation of a fully replicated, hot-standby database system is pre-
sented, together with some performance tuning possibilities. To study the effect
of several database-tuning parameters, a telecom-oriented database benchmark,
TM1, is used. The experiments involve varying of the read/write balance and
various logging and replication parameters. It is shown that, by relaxing the re-
liability requirements, significant performance gains can be achieved. Also, it is
demonstrated that a possibility to redirect the log writing from the local disk to
the standby node is one of the most important benefits of a high-availability
database system.

Introduction

The goal of highly available (HA) systems is to make system or component failures
tolerable. The extent to which failures are tolerable is specified with the availability
measure A that is equal to the percentage of the time a service is operational, as re-
lated to the total time the service is supposed to be operational. Availability can be
derived from the maximum duration of an outage (equal to mean time to repair,
MTTR) and the frequency of outages (represented with mean time between failures,
MTBF), by using the following formula:

%100•
+

=
MTTRMTBF

MTBFA
(1)

To deal with failures, an HA system embodies redundancy both in hardware and
software, typically managed by a framework such as AMF (Availability Management
Framework) [1] of SA Forum1.

In the simplest redundancy model, called 2N, the two units, active and standby,
make up a mated pair, and the redundant application components are organized in
pairs in the corresponding units. Should a failure occur, the failed active unit (hard-

1 http://www.saforum.org

Third International Service Availability Symposium (ISAS 2006),
May 15-16, 2006, Helsinki, Finland.
© Springer-Verlag Berlin Heidelberg 2006

2 Antoni Wolski and Vilho Raatikka

ware or software) is quickly replaced with a corresponding standby unit. This opera-
tion is called a failover. The purpose of failover is to maintain the required service
availability, in the presence of failures. The hot-standby technique described above
allows achieving at least five nines (99.999%) availability required in the telecom
systems.

The availability of the database services is maintained by using the very same ap-
proach. Various architectures of highly-available database management systems (HA-
DBMS) have been proposed and implemented commercially [7]. In this paper, the
focus is on the utility of a fully replicated hot-standby (HSB) HA DBMS. In such a
system, a stream of transactions is continuously sent from the Active server to the
Standby server, by way of a replication protocol.

A typical hot-standby database system can be configured in a variety of ways.
Most important tuning parameters are the ones dealing with the synchrony of the log
writing (the durability settings) and the synchrony of the database replication protocol
(the safeness characteristics, first introduced in [2]). Typically, the goal of the HA-
DBMS tuning is to achieve the best trade-off among the three characteristics: data
durability, failover time, and performance.

The problem is that the usage of those parameters is often based on intuitive argu-
mentation, without any experimental data to depend on. We are not aware of any
published work shedding any light on the problem. In this paper, we report on experi-
ments conducted using a real-life commercial HA-DBMS in a telecom setting. The
purpose of the experiments was to find out what was the effect of the tuning parame-
ters on the overall HA-DBMS performance. The product used in the experiments was
Solid's HA-DBMS called Solid Database Engine with CarrierGrade Option [8]. For a
case study on applying the product to a commercial telecom HA framework, see [11].

The obtained results support the general notion that increasing asynchrony im-
proves performance. However, the comparison among the effects of different setting
may not correspond to intuitive presumptions.

We summarize the HA-DBMS architecture in Section 2. Various configuration pa-
rameters are also introduced together with their intuitive purpose. Database bench-
marking is discussed in Section 3, where also the TM1 benchmark is introduced. Test
results are summarized in Section 4. We conclude with a summary of the results, and
general guidelines for HA-DBMS users.

Tuning Highly Available Databases

An HA-DBMS based on the hot-standby principle is composed of the elements shown
in Fig. 1.

Performance Measurement and Tuning
of Hot-Standby Databases 3

Commit

OK

Log LogPrimary
DB

Secondary
DB

Active server Standby server

Replication
protocol

Transaction
Logger

Transaction
Logger

Fig. 1. Architecture of a hot-standby HA-DBMS.

A database (Active or Standby) server is a component that offers a database access
service to applications, mostly by way of over-the-network connections. Transaction
is an abstraction of a transaction processing thread. The DB (database file) is an ab-
straction of persistent storage of the data. In reality, one or more system-level files
can be used for the purpose. Primary DB is a "live" database updated by the transac-
tions running on the Active server. Secondary DB is kept up-to-date by way of a rep-
lication protocol. Secondary DB may be subjected to read-only load, if necessary.
Logger is a thread that writes the Log. The Log represents one or more persistent files
to store the effects of transactions as they are executed in the server. The Log is in-
strumental in making it possible to perform a startup database recovery. In the recov-
ery process, the Log is scanned to ensure that the database is in a consistent state, by:
− removing the effects of uncommitted transactions, and
− re-executing committed transactions that have not been checkpointed to the data-

base.
If we deal with a standalone database system (not hot standby), the recovery process
preserves the Atomicity and Durability characteristics of the database over system
failures and terminations [2].

The standard level of durability support is called strict durability. It requires that
the commit record of a transaction is written synchronously to the persistent medium
(disk) before the commit call is returned to the application. The technique is often
referred to as WAL—Write-Ahead Logging. WAL processing is very resource-con-
suming and often becomes a bottleneck in the system. Therefore, whenever the dura-
bility requirement can be relaxed, it is done. Especially, in the telecom environment,
in some applications like call setup, session initiation, etc., a service request is occa-
sionally allowed to fail (and be lost) if the probability is not very high. In such a case,
relaxed durability may be applied whereby the log is written asynchronously. This
means that the commit call may be returned without the need to wait for the disk. This
results in significant improvement in both the system throughput and response time.
In this paper, an effort is made to quantify the effect of switching from strict to re-
laxed durability on total throughput.

In an HSB database, transactions are also sent to the standby server by way of a
replication protocol. In order to preserve the database consistency in the presence of
failovers, the replication protocol is built very much on the same principles as physi-
cal log writing: the transaction order is preserved, and commit records demarcate
committed transactions. If a failover happens, the Standby server performs a similar
database recovery as if a transaction log was used: the uncommitted transactions are
removed and the committed ones are queued for execution.

4 Antoni Wolski and Vilho Raatikka

Similarly to log writing, the replication protocol may be asynchronous or synchro-
nous. To picture that, we use the concept of safeness level where 1-Safe denotes an
asynchronous protocol and 2-Safe denotes a synchronous one [2]. The two safeness
levels are illustrated in Fig. 2.

1-safe

Commit

OK

Committed transaction

OK

Commit
OK

Committed transaction

OK

Primary
DB

Secondary
DB

Active server Standby server

Active server Standby server

Secondary
DB

Primary
DB

2-safe

Fig. 2. Illustration of safeness levels.

One may see that the benefit of 1-Safe replication is similar to that of relaxed durabil-
ity: the transaction response time is improved, and the throughput may be expected to
be higher, too. On the other hand, with 2-Safe replication, no committed transactions
are lost upon failover. You might call this transaction characteristic standby-based
strict durability, as opposed to log-based strict durability of a traditional DBMS. One
immediate observation is that the log-based durability level has no effect on actual
durability of transactions in the presence of failover. It is the standby-based durability
that counts. The traditional log writing is relegated to the role of facilitating the data-
base system recovery in the case of a total system failure. All other (more typical)
failures are supposed to be taken care of by failovers. If a total system failure is
unlikely (as builders of HA systems want to believe), a natural choice is to replace
strict log-based durability with strict standby-based durability, that is, the 2-Safe pro-
tocol. Here, the gain is a faster log processing without really loosing strict durability
(if only single failures are considered). To take the full advantage of the possibility,
Solid's HA DBMS has an automated feature called adaptive durability. With adaptive
durability, the Active server's log writing is automatically switched to strict if a node
starts to operate without a Standby. Otherwise, the Active server operates with re-
laxed durability.

The possibility to transfer the log writing responsibility from the disk to the net-
work is very tempting because, by a common perception, a message round trip travel
over a high-speed network may be almost an order of magnitude faster than writing
synchronously to the disk.

In addition to the choice between 1-Safe and 2-Safe replication, 2-Safe protocols
may be implemented with different levels of involvement of the Standby server in the

Performance Measurement and Tuning
of Hot-Standby Databases 5

processing of the commit message. In [7], two levels were proposed: 2-Safe Received
and 2-Safe Committed. In this paper, the following 2-Safe policy levels are defined:
• 2-Safe Received: the Standby server sends the response immediately upon receipt

(as in [7]).
• 2-Safe Visible: the Standby server processes the transaction to the point that the

results are externally visible (in-memory commit).
• 2-Safe Durable: the Standby process processes the transaction to the point that it is

written to a persistent log (strictly durable commit).
The three policy levels are illustrated in Fig. 3.

2-Safe Received

Commit

OK

Commit
OK

asynchronous logging

asynchronous logging

Active server Standby server

Log Log

2-Safe Visible

2-Safe Durable

DB

DB

DB

DBLog Log

Commit

OK

synchronous logging

DB DBLog Log

Responding
only

Committing
transaction
in-memory

Committing
transaction
durably

Committed transaction

Committed transaction

Committed transaction

Fig. 3. 2-Safe policy levels.

Of the three 2-Safe policy levels, 2-Safe Received is intuitively the fastest and 2-Safe
Durable the most reliable. In a system with 2-Safe Durable replication, the database
may survive a total system crash and, additionally, a media failure on one of the
nodes. This comes, however, at a cost of multiple synchrony in the system.

The 2-Safe Visible level is meant to increase the system utility by maintaining the
same externally visible state at both the Active and Standby servers. Thus, if the
transactions are run at both the Active and Standby servers (read-only transactions at
Standby), one-copy serializability [2] may be maintained over global transaction
histories. The cost of maintaining this consistency level involves waiting for the
transaction execution in the Standby server, before acknowledging the commit mes-
sage.

To summarize, the intuitive rules for choosing the best trade-off between perform-
ance and reliability are the following:

6 Antoni Wolski and Vilho Raatikka

1. To protect against single failures while allowing for some transactions to be lost
on failover use 1-Safe replication with relaxed log-based durability.

2. To protect against single failures, with no transactions lost on failover use 2-
Safe Received replication with relaxed log-based durability.

3. To protect against single failures, with no transactions lost on failover and a
possibility to use the Primary and Secondary databases concurrently use 2-
Safe Visible replication with relaxed log-based durability.

4. To protect against total system failure (in addition to single-point failures)
use any 2-Safe protocol and strict log-based durability in the Active server.

5. To protect against total system failure and a media failure use 2-Safe Durable
replication with strict log-based durability in both the Active and Standby serv-
ers.

It is also worth noting that a third dimension in assessing different replication proto-
cols is the failover time. The further transactions are processed in the Standby server
at the time of a failover, the faster the failover is. The protocols may be ordered by the
failover time, from the shortest to the longest, in the following way: 2-Safe Durable,
2-Safe Visible, 2-Safe Received and 1-Safe.

In the performance testing experiments, we study the effect of all the above parame-
ters on the system performance. We take advantage of the fact that the Solid's HA
DBMS product has all the necessary controls, both in the form of configuration pa-
rameters and dynamic administrative commands.

Database Benchmarks

Benchmarking serves multiple needs. Results are often used to help product evalua-
tion and they offer valuable information for the developers. Moreover, if the results
happen to be good, manufacturers use them in product marketing to show the superior
performance of a product over the competitors.

Evaluating different database products requires reliable information of their per-
formance under domain-specific workload. In order to be useful in performance com-
parisons, the workload generated by the benchmark should imitate the reality as much
as possible. Therefore, there is an inevitable need for domain-specific benchmarks.
Furthermore, a benchmark is more likely to be widely accepted if its provided by a
consortium consisting of wide range of independent participants than if its published
and owned by a single organization. It is also assumed that a domain-specific bench-
mark must generate typical operations in that domain and measure them trustworthy.
It must also be easily portable to different platforms. It should scale to systems of
different sizes, too. Finally, it must be easily understandable to create credibility [4].

Wisconsin benchmark [3] measures the performance of a single-user database soft-
ware and the hardware it runs on. It is generic, not domain-specific, but it is intuitive
and the database scales in size. To get reliable results, the test must be conducted
under certain conditions. For example, the database size must be at least five times the
size of the buffer pool (page cache). Moreover, the effect of the buffer pool, which is
one of the main performance makers in read-intensive operations, is intentionally
eliminated by varying the queries of query sets.

Performance Measurement and Tuning
of Hot-Standby Databases 7

AS3AP [10], which fills the deficiencies of the Wisconsin benchmark, is also gen-
eral-purpose in its nature, but it provides both single-user and multi-user tests to
measure the performance of a database system under "typical" OLTP2, IR3, mixed,
and single-user workloads.

Nowadays, enterprise-oriented benchmarks come from the Transaction Processing
Performance Council4. They deal with enterprise applications: order entry, decision
support and web server applications.

The telecom field has been long in the need of a domain-oriented benchmark. The
TM1 Benchmark started life as a special purpose benchmark used internally by a
telecom equipment manufacturer. It was used to estimate the speed of various data-
base management systems on different hardware platforms. In April 2004, the
benchmark specification was published as part of a Master’s Thesis at the University
of Helsinki [9]. In November 2004, Solid published the entire benchmark description
on their web site and made a benchmark kit available for free download5. The kit
enabled any interested party to set up a test environment and run the TM1 benchmark.
In February 2006, the corresponding Nokia's Network Database Benchmark was
published6.

Unlike the TPC benchmarks, the TM1 benchmark is based on a telco scenario, the
Home Location Register (HLR). The HLR holds subscriber's identification informa-
tion as well as other details of service provisioning. TM1 measures performance only.
Maintenance or purchasing costs are not considered.

The benchmark uses four tables and a set of seven transactions that can be com-
bined in different mixes (see the Appendix for more details on TM1). The most typi-
cal mix is denoted as "R80W20" meaning 80% of read transactions and 20% of modi-
fication transactions. In the experiments reported here, we used both the R80W20 and
R20W80 mixes.

Testing Results

Test System

The system under test (SUT) consisted of two database servers both running on Linux
Fedora Core 2. One server played the role of an Active database server while the
other was a Standby database server. The configuration of both the Active and
Standby servers remained the same during the tests excluding the logging modes.
That is, the durability level and the safeness level of the servers varied. The workload
was generated by TM1 benchmark, which ran simultaneously on two separate
Windows 2000 computers. All four computers shared an isolated one gigabit network.
More specific description of the test environment is presented in the table below:

2 OLTP = On-Line Transaction Processing
3 IR = Information Retrieval
4 http://www.tpc.org
5 http://www.solidtech.com/tm1
6 https://hoslab.cs.helsinki.fi/savane/projects/ndbbenchmark/

8 Antoni Wolski and Vilho Raatikka

Table 1. Test system configuration data.

Role CPU/MHz Memory/B disks OS

Active server 1800 4096 2xSCSI Fedora Core 2

Standby server 1800 4096 2xSCSI Fedora Core 2

TM1 client host 2x1666 1024 IDE Win2000 SP4

TM1 client host 2x1666 2048 2xSCSI Win2000 SP4

The results of the tests were stored into the Test Input and Result Database (TIRDB),
which was located on its own computer.

Tests started by copying a fresh database file to the working directory of the Active
database server, disabling the write-ahead caches of both SCSI devices, and starting
the server. In those tests where the Standby database server was used, it was started in
the similar way, and the database of the Active server was replicated to it. According
to the TM1 specifications, each test run was divided to ramp-up time and measured
run time. We used 10 minutes ramp-up time followed by 20 minutes run time.

TM1 measures mean qualified throughput (MQTh) and response times for each
transaction type. MQTh is a sum of successfully executed transactions from all clients
divided by the duration (in seconds) of test run. The result is the average transaction
rate per second.

We used 10 database client instances in each TM1 client host to create the work-
load. In TM1, clients are represented by separate processes and each client retains its
own data structure for result data

The workload consisted of write and read intensive transaction mixes. In write in-
tensive workload 80% of transactions included writes and 20% included reads only.
In read intensive load the share between write and read transactions was the opposite.

The distribution of different transactions is presented in the following table:

Table 2. Transaction mixes for two kinds of load.

write-intensive load read-intensive load
GET_SUBSCRIBER_DATA 9
GET_NEW_DESTINATION 2
GET_ACCESS_DATA 9
UPDATE_SUBSCRIBER_DATA 8
UPDATE_LOCATION 56
INSERT_CALL_FORWARDING 8
DELETE_CALL_FORWARDING 8

GET_SUBSCRIBER_DATA 35
GET_NEW_DESTINATION 10
GET_ACCESS_DATA 35
UPDATE_SUBSCRIBER_DATA 2
UPDATE_LOCATION 14
INSERT_CALL_FORWARDING 2
DELETE_CALL_FORWARDING 2

The TM1 HLR database size is determined by the number of rows in the
SUBSCRIBER table. The population used consisted of 500 000 subscribers, 1.25
million rows in ACCESS_INFO, 1.25 million rows in SPECIAL_FACILITY and 1.9
million rows in CALL_FORWARDING. The database file size was about 840MB.

Performance Measurement and Tuning
of Hot-Standby Databases 9

Result Summary

We ran three kind of tests in which emphasis was on the log write mode (log-based
durability) of the Active server, the log write mode of the Standby server and the
safeness level of the replication protocol. Every test was run with both read-intensive
and write-intensive workload. A set of tests was run on a standalone server first, to
quantify the effect of durability settings on the general performance. The results are
shown in Fig. 4.

711

1005

2034

2458

0

500

1000

1500

2000

2500

3000

Strict Relaxed
Durability level

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

R20/W80 R80/W20

Fig. 4. Effect of the durability level on performance of a standalone database server.

The comparison above shows that using asynchronous log writing in a standalone
server increases the throughput of the system with read and write intensive workload
by 20-40%, respectively. In the hot-standby configuration, a question may arise
whether to use strict log-based durability in the Active server or not. The difference is
illustrated in Fig. 5.

583

1465

1905

3269

0

500

1000

1500

2000

2500

3000

3500

Strict (2-Safe
Received)

Relaxed (2-Safe
Received)

Durability level

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

R20/W80 R80/W20

Fig. 5. Effect of the durability setting on performance of an HSB database using 2-Safe
Received protocol.

10 Antoni Wolski and Vilho Raatikka

The results shown suggest that, by using relaxed durability in the Active server (that
is, "delegating" the log writing to the Standby), a significant (70-250%) increase in
the system throughput can be gained. In the case of the presented 2-Safe Received
replication protocol, the Standby node runs with relaxed durability, in any case. Since
logging affects the write transactions only, the benefit especially materializes with
write intensive workload.

When looking at the comparison of all the replication protocols (all of which run
with relaxed durability in the Active node, except for 2-Safe Durable), one can see
that the earlier intuitive conjecture is verified: the more asynchrony there is in the
system, the more throughput can be achieved (Fig. 6).

552

943

1465
18081781

2309

3269
3551

0

500

1000

1500

2000

2500

3000

3500

4000

2-Safe Durable
(strict)

2-Safe Visible
(relaxed)

2-Safe Received
(relaxed)

1-Safe (relaxed)

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

R20/W80 R80/W20

Fig. 6. Comparison of all HSB database replication protocols.

The difference in performance is most significant for the write-intensive loads: there
can be more than 300% of improvement between the extreme ends. On the other
hand, the modest benefit of the 1-Safe protocol comes as a surprise. The explanation
may be that, in the presence of high concurrent load, other optimization mechanisms
(like group commit [11]) compensate for the lack of asynchrony, with 2-Safe proto-
cols. Another explanation may be that another bottleneck appears in the system with
the speed-up of the protocol.

Conclusions

We have conducted performance testing of a hot-standby highly available database,
using a telecom-oriented benchmark and different load mixes. The obtained results
provide quantitive guidance to developers of HA systems, needing to configure the
databases properly. In seeking a right trade-off among the required reliability, failover

Performance Measurement and Tuning
of Hot-Standby Databases 11

time and throughput, the effect of the durability and replication settings on the per-
formance is the most important factor in making the decision.

The results support the intuitive conjecture that increasing asynchrony leads to
more throughput. The reported significant gains in throughput should encourage the
developers to select asynchronous processing modes as much as they are not re-
stricted by other requirements.

References

1. Application Interface Specification, SAI-AIS-B.02.02, December 2005. Service Availabil-
ity Forum, available at http://www.saforum.org.

2. Bernstein, Ph. A.; Hadzilacos, V.; Goodman, N.: Concurrency control and recovery in
database systems. Addison-Wesley Publishing Company, 1987, ISBN 0-201-10715-5.

3. Bitton, D., DeWitt, D.J., Turbyfill, C.: Benchmarking Database Systems A Systematic
Approach. VLDB 1983: 8-19.

4. Gray, J. (ed.): The Benchmark Handbook for Database and Transaction Processing Sys-
tems. Morgan Kaufmann Publishers, 1993, ISBN 1-55860-292-5.

5. Gray, J. and Reuter, A.: Transaction Processing Systems, Concepts and Techniques. Mor-
gan Kaufmann Publishers, 1992, ISBN 1-55860-190-2.

6. Brossier, S., Herrmann, F., Shokri, E.: On the Use of the SA Forum Checkpoint and AMF
Services. Proc. ISAS 2004, May 13-14, 2004 Munich, Germany. Springer-Verlag Lecture
Notes in Computer Science, Vol. 3335, ISBN: 3-540-24420-4.

7. Drake, S., Hu, W., McInnis, D.M., Sköld, M., Srivastava, A., Thalmann, L., Tikkanen, M.,
Torbjørnsen, Ø.,Wolski. A.: Architecture of Highly Available Databases. Proc. ISAS 2004,
May 13-14, 2004 Munich, Germany. Springer-Verlag Lecture Notes in Computer Science,
Vol. 3335, ISBN: 3-540-24420-4.

8. Solid High Availability User Guide, Version 4.5, Solid Information Technology, June
2005, available at http://www.solidtech.com.

9. Strandell, T.: Open Source Database Systems: Systems study, Performance and Scalability.
Master's Thesis, University of Helsinki, Department of Computer Science, May 2003, 54 p.
(http://www.cs.helsinki.fi/u/tpstrand/thesis/)

10. Turbyfill, C., Orji, C.U., Bitton. D.: AS3AP - An ANSI SQL Standard Scaleable and Port-
able Benchmark for Relational Database Systems. In [4].

11. Wolski, A. and Hofhauser, B.: A Self-Managing High-Availability Database: Industrial
Case Study. Proc. Workshop on Self-Managing Database Systems (SMDB2005), April 8-9,
2005, Tokyo, Japan. http://research.solidtech.com/publ/wolhof-smdb05-ha-case.pdf.

12 Antoni Wolski and Vilho Raatikka

Appendix: TM1 specifications

Because of lack of space, only general descriptions are included here. For a full
benchmark description, see http://www.solidtech.com/tm1.

The purpose of the benchmark is to derive a maximum performance that can be
achieved in a database system under a certain load. The SUT (system under test) is
composed of target equipment and a database system being tested. In the case of HSB
tests, two target computers are used. The load is generated in a separate computer
(TM1 client host) where distinct processes emulate user applications. The detailed
description includes specifications for the test duration, the database scaling and
population rules, transactions mixes and user loads.

TM1 Database schema

The TM1schema models an HLR (Home Location Register) structure found in all
mobile telephone systems. The schema is composed of the four tables shown below.

 Subscriber
s_id
sub_nbr
bit_1
bit_2
..
bit_10
hex_1
hex_2
..
hex_10
byte2_1
byte2_2
..
byte2_10
msc_location
vlr_location

Access_Info
s_id
ai_type
data1
data2
data3
data4

Special_Facilty
s_id
sf_type
is_active
error_cntrl
data_a
data_b

Call_Forwarding
s_id
sf_type
start_time
end_time
numberx

1 1..4

1 1..4

0..3

1

Fig. A-1. Schema of TM1.

Performance Measurement and Tuning
of Hot-Standby Databases 13

TM1 Transactions

The purpose of the transactions is to emulate typical HLR activities in call set-up and
provisioning. The transactions are listed below.

GET_SUBSCRIBER_DATA {

SELECT s_id, sub_nbr, bit_1, bit_2, bit_3, bit_4, bit_5, bit_6, bit_7, bit_8, bit_9, bit_10, hex_1, hex_2,
hex_3, hex_4, hex_5, hex_6, hex_7, hex_8, hex_9, hex_10, byte2_1, byte2_2, byte2_3, byte2_4,
byte2_5, byte2_6, byte2_7, byte2_8, byte2_9, byte2_10, msc_location, vlr_location

FROM subscriber
WHERE s_id = <s_id rnd>;

}
GET_NEW_DESTINATION {
 SELECT cf.numberx FROM special_facility AS sf, call_forwarding AS cf
 WHERE (sf.s_id = <s_id rnd>
 AND sf.sf_type = <sf_type rnd>
 AND sf.is_active = 1)
 AND (cf.s_id = sf.s_id
 AND cf.sf_type = sf.sf_type)
 AND (cf.start_time \<= <start_time rnd>
 AND <end_time rnd> \< cf.end_time);
}
GET_ACCESS_DATA {
 SELECT data1, data2, data3, data4 FROM access_info
 WHERE s_id = <s_id rnd>
 AND ai_type = <ai_type rnd>;
}
UPDATE_SUBSCRIBER_DATA {
 UPDATE subscriber
 SET bit_1 = <bit rnd>
 WHERE s_id = <s_id rnd subid>;

 UPDATE special_facility
 SET data_a = <data_a rnd>
 WHERE s_id = <s_id value subid>
 AND sf_type = <sf_type rnd>;
}
UPDATE_LOCATION {
 UPDATE subscriber
 SET vlr_location = <vlr_location rnd>
 WHERE sub_nbr = <sub_nbr rndstr>;
}

