
SIREN: a memory-conserving, snapshot-consistent checkpoint algorithm for
in-memory databases

Antti-Pekka Liedes Antoni Wolski

Solid Information Technology Ltd.
Itälahdenkatu 22

FIN-00210 Helsinki
E-mail: {firstname.lastname}@solidtech.com

Abstract

Checkpoint of an in-memory database is the main source
of a persistent database image surviving a software crash,
or a power outage, and is, together with transactions logs, a
foundation for transaction durability. Since checkpoints are
created simultaneously with transaction processing, they
tend to decrease database throughput and increase its mem-
ory footprint. Of the current methods, most efficient are
the fuzzy checkpoint algorithms that write dirty pages to
disk and require transaction logs for reconstructing a con-
sistent state. Known consistency-preserving methods suffer
from excessive memory usage or a transaction-blocking be-
havior. In this paper, we present a consistency-preserving
and memory-efficient checkpoint method. It is based on tu-
ple shadowing as opposed to known page shadowing meth-
ods, and rearranging of tuples between pages for minimal
memory usage overhead. The method’s algorithms are in-
troduced and both analytical and experimental analysis of
the proposed algorithms show significant reduction in the
memory usage overhead, and up to 30% higher transaction
throughput compared with a fuzzy checkpoint method with
undo/redo log.

1 Introduction

A disk-resident database (DRDB) stores its data primar-
ily on the disk and caches it to RAM, whereas an in-memory
database (IMDB) stores the data in RAM and backs it up
on the disk [3]. This distinction affects the way in which
a DRDB and an IMDB approach persistency; while in a
DRDB the primary data storage is the non-volatile disk, in
an IMDB, the primary data storage is the volatile RAM. An
IMDB must thus make backups of the volatile data storage
to a non-volatile media, typically in the form of a check-
point [12]. In addition to the checkpoint, a transaction log

is used to bring the database up to the latest consistent state
after a crash.

To fully exploit the performance of main-memory trans-
action processing, the checkpoint algorithm should not dis-
turb concurrent access to the data by causing any read or
a write operation to wait for the unpredictable disk access.
In addition, checkpointing should not significantly increase
the memory consumption of the IMDB, and should not re-
duce transaction processing performance.

Fuzzy checkpoint methods [5, 12] appear to be most suit-
able for IMDB’s, because they do not obstruct the transac-
tion processing. However, they require an undo/redo log to
bring the inconsistent checkpoint back to a consistent state
[4]. An undo/redo log contains information for both undo-
ing and redoing a transaction, while only one of these is
actually needed in crash recovery. Much of the research
on fuzzy checkpoints thus concentrates on improving the
logging performance by log compression [1, 5], combining
logical logging with fuzzy checkpointing [14], and using
differential bitwise-XOR logging [6].

A consistent checkpoint method allows for more free-
dom in transaction logging. It is possible to use a more
efficient redo-only log [4], as opposed to undo/redo log, or
to operate without logging, if checkpoint-only persistency
is enough. A consistent checkpoint method also makes log
recovery simpler, as the checkpoint can be marked into the
log and rollforward can be started from the latest succes-
ful checkpoint mark. Furthermore, a consistent checkpoint
can be used as a snapshot or a backup of the database in
itself, without the need for any associated logs. The copy-
on-update method [1, 2] produces a consistent checkpoint,
but incurs a large memory usage overhead, potentially dou-
bling the amount of RAM needed for the database.

A compromise between the fuzzy and copy-on-update
approaches is sought in a method [7] whereby the shadow
copy of a page is held only for the time of checkpointing this
page. The recovery thus needs the log to be successful but it

awolski
The 22nd International Conference on Data Engineering (ICDE'06),
Atlanta, GA, April 3-7, 2006.

is optimized by recovering pages on-demand. A method of
log-driven backup [8] reflects the goal to be freed from the
dealing with the in-memory data pages. An asynchronous
propagator applies the log directly to the on-disk pages (the
checkpoint). The random disk access is suboptimal but it
can be improved by applying changes in by-page groups.
Also in this method, the log is needed to perform recovery,
and the stale pages are recovered on the request basis.

In this paper, we present a new main-memory checkpoint
algorithm that produces a consistent checkpoint with min-
imal memory usage overhead and allows for logical, redo-
only logging. This algorithm is part of the Solid In-memory
Relational ENgine (SIREN), a main-memory database en-
gine that also contains data storage and transaction execu-
tion algorithms. While this paper deals only with the data
storage and checkpointing, a more complete description of
SIREN can be found in [10]. By using a logical page struc-
ture, wherein freely floating tuples are linked together in
linked lists to form pages, SIREN makes rearranging tu-
ples in a page and between pages very efficient. This paves
the way for tuple level copy-on-write and rearranging of tu-
ples for efficient disk writing order. This makes it possible
for SIREN to produce a consistent checkpoint efficiently
and with very low memory usage overhead, while allowing
transactions to read and update any data without ever having
to wait for disk access.

The highly logical structure of data in SIREN leaves
room for different main-memory optimized algorithms and
structures to be used. Since the SIREN indexes are not per-
sistent, the most main-memory efficient structures can be
used without concern of disk residence. SIREN also uses
an effective form of transaction shadow areas [9].

The theoretical analysis of SIREN shows that it never
blocks the transactions processing while waiting for the
disk. Furthermore, the theoretical treatment and practical
experiments show that SIREN avoids any major memory
usage overhead, and by using a redo-only log, is able to
achieve a higher transaction throughput than a fuzzy method
with undo/redo log.

The SIREN engine is part of the Solid BoostEngine
product, which has been commercially available since April
2003.

This paper is arranged as follows. In Section 2, the
SIREN data storage model and operations on it are intro-
duced. In Section 3, the checkpoint and recovery methods
are described. In Section 4, an analytical comparison of
SIREN to previous work is given, and in Section 5, a practi-
cal performance study is offered. Section 6 contains imple-
mentation notes, and Section 7 concludes the paper.

2 SIREN data storage

The overall structure of data in the SIREN storage is de-
picted in Figure 1. The storage is formed of pages, arranged
into a doubly linked list. Each page consists of a page
header and a set of tuples in a doubly linked list. The tu-
ples are pointed to using tuple proxy (“troxy”) objects from
the index level. Troxies are used for transactional access to
the tuples. The troxies form the transaction shadow areas by
storing different versions of a tuple and contain information
about which statement and transaction created each version.
Each troxy represents a distinct value in the index.

Index

Pages

Tuples

Troxies

Figure 1. Structure of SIREN

Only the pages and tuples are persistent. The indexes are
transient, and rebuilt at recovery.

2.1 Pages and clustering

In SIREN, a page is not a contiguous areas of memory (a
“physical page”), but a list of tuples floating around in mem-
ory (a “logical page”). This has a couple of consequences:

• Splitting and joining pages is efficient, because we do
not need to actually copy the tuples. It is enough to
split the tuple list and fix the page pointers for the trox-
ies of the moved tuples.

• It is possible to create overfull pages that have more
tuples than would actually fit the page.

• The fill ratio of pages affects the database space re-
quired only on disk, not in main-memory.

• Adding tuples to and removing tuples from pages is a
simple list operation, no reorganization of potentially
large chunks of memory are required.

Tuples are arranged into pages mostly to facilitate partial
and incremental checkpoints. The tuples of a table are or-
dered by the table’s clustering key, and the pages are treated
analogously to the leaf level of a B-tree, irrespective of the
actual index structure used. If a page becomes overfull, it
is split, like a B-tree page. Similarly, if the amount of data

2

on two neighboring pages falls below a threshold, they are
joined. The clustering key is the table’s primary key, or if no
primary key is supplied by the user, a synthetic key consist-
ing of tuple number is used. The tuple number is a counter,
incremented whenever a new tuple is created.

Whenever a tuple is added to a table, the tuple’s loca-
tion in the page structure is decided by finding the previous
tuple that is just before the new tuple in the clustering in-
dex. Because there may be more than one version of a tuple
within a transaction, a single clustering index value may
have more than one corresponding tuple in the storage. The
tuples with the same clustering index value are placed one
after the other, and may be located on different pages.

SIREN uses shadow paging between checkpoints (as op-
posed to shadow paging each transaction) to keep the previ-
ous checkpoint valid until the new one has been fully com-
pleted. Only the pages that have been changed since the last
checkpoint are written to the disk, and each page has a dirty
flag to identify if it needs to be written or not.

2.2 Normal operations

The SIREN storage has three operations for transactions:

Add tuple adds a new tuple to the storage. Because the
clustering index is not part of the storage, the location
of the new tuple must be given. The new tuple may be
a completely new tuple, a new version for an existing
tuple, or a delete mark for an existing tuple. The tu-
ples are added as tentative tuples, i.e., not transaction
committed.

Remove tuple removes an existing tuple.

Commit tuple marks a tuple as committed (non-tentative).

A transactional update is performed by first adding the
new version of the tuple being updated, and then remov-
ing the old version at transaction commit. The commit also
marks the new version as transaction committed. This be-
havior is a combination of both shadow and immediate up-
dating [9]. The tentative/committed status has significance
in recovery, and is described in Section 3.4.

Normally, when the checkpointing is not active, the
operations are very straightforward. All changes to the
storage are performed directly, as described in SIMPLE-
ADD, SIMPLE-REMOVE, and SIMPLE-COMMIT.

SIMPLE-ADD(table, prev tuple, new tuple)
1 if prev tuple = NIL then
2 page ← table.first page

3 if page = NIL then
4 page ← create page()
5 table.first page ← page

6 page.add first(new tuple)

7 else
8 page ← prev tuple.page

9 page.add after(prev tuple, new tuple)
10 if page.need split() then
11 page1 , page2 ← page.split(50%)
12 page1 .dirty ← TRUE

13 page2 .dirty ← TRUE

14 page.dirty ← TRUE

SIMPLE-REMOVE(tuple)
1 page ← tuple.page

2 page.remove(tuple)
3 free tuple

4 if page.should join(page.predecessor) then
5 page.join(page.predecessor)
6 elseif page.should join(page.successor) then
7 page.join(page.successor)
8 page.dirty ← TRUE

SIMPLE-COMMIT(tuple)
1 page ← tuple.page

2 tuple.committed ← TRUE

3 page.dirty ← TRUE

In the algorithms, the methods add first, add after,
and remove are simple list operations. A tuple’s page is
found from the tuple’s troxy.

3 SIREN checkpointing

I the beginning of a checkpoint, we “freeze” all the pages
that are to be backed up in that checkpoint to produce a
consistent checkpoint. The checkpoints begins with a short
atomic step BEGIN-CHECKPOINT, in which it freezes all
the pages that are dirty at the time. BEGIN-CHECKPOINT

is atomic with respect to any actions on the storage, and
any transaction commit or abort. While no transaction may
be committing or aborting during BEGIN-CHECKPOINT,
any number of transactions may be in other processing
stages. As commit and abort are non-interactive operations,
BEGIN-CHECKPOINT is never delayed indefinitely.

There are two ways to identify frozen pages. One is
to use a per-page freeze flag, the other is to use per-page
checkpoint levels. The checkpoint level is the sequence
number of the current checkpoint, and the per-page check-
point levels indicate which checkpoint the page belongs to.
While the checkpoint levels are more efficient, freeze flags
are conceptually a bit easier, and thus we use them in our
description.

BEGIN-CHECKPOINT()
1 add checkpoint record to transaction log
2 for page ∈ pages do

3

3 if page.dirty then
4 page.frozen ← TRUE

Note that BEGIN-CHECKPOINT involves no syn-
chronous disk writing. The checkpoint record is written to
the transaction log asynchronously, only making sure it is
in the correct place in the log.

3.1 Operations while checkpointing

We cannot alter frozen pages with transactional opera-
tions, because we need to retain their consistency for the
checkpoint. To overcome this problem, we present pend-
ing operations, which are analogous to shadow paging and
copy-on-update. With pending operations, only the opera-
tion is shadowed. In other words, this could be described as
“shadow tupling”, compared to shadow paging.

To illustrate the way pending operations work, consider
the Figure 2, which shows two troxies r1 and r2, having
tuples t1 and t2, respectively, located on a frozen page p1.
Now, a transaction T1 wants to make a new version t1’ of t1.
On the storage level, this is an add tuple operation, which
is performed as a pending operation, because p1 is frozen.
The results are shown in Figure 3. The pending add record,
depicted as an ellipse with Add, is added to the page for the
tuple t1’. For the sake of compactness, the indexing level
is not shown in this and following figures. In the following
figures, the new elements added after the previous step are
drawn with dashed lines.

p1

r1 r2

t1 t2

Troxies

Pages

Tuples

Figure 2. Before update

p1

r1 r2 Troxies

Pages

Tuplest2t1’t1

Add Pendings

Figure 3. After update

The tuple t1’ is added to its normal position in the tu-
ple list of p1, but it is marked as a pending add, and the
pending operation is added to p1’s list of pending opera-
tions. Because of the pending add, t1’ is not yet considered
as a “real” member of p1, meaning that t1’ does not con-
tribute to the fill ratio of the page, and it is not included in
the checkpoint image of the page. This way, the page can
be checkpointed consistently, i.e., in the state it was in when
BEGIN-CHECKPOINT was called.

As transaction T1 commits, t1’ is transaction commit-
ted, and t1 is removed from the database, replaced by t1’.
The results are shown in Figure 4. The old version t1 can
not be removed yet, because the page is frozen, and t1 is
thus associated with a pending remove, marked by an el-
lipse with Rem. The commit also marks t1’ as transaction
committed, but this does not produce a pending commit op-
eration. Tuples with a pending add are not included in the
checkpoint image and can thus be committed and removed
directly, without postponing the operation until the page has
been checkpointed. If the tuple being committed does not
have a pending add, a pending commit for the tuple is pro-
duced (not shown).

p1

r1 r2 Troxies

Pages

Tuplest2t1’t1

PendingsAddRem

Figure 4. After commit of t1’ and remove of t1

The pending operations are not directly coupled with
transactions. A tuple with a pending add is considered a
regular tuple by the transactions, and it does not mean that
the transaction that created the tuple is still active. Tuples
with a pending remove have been removed from the index
when the pending remove was produced, and are thus not
visible to transactions.

Taking checkpointing into account, we refine our
operations as follows.

ADD-TUPLE(table, prev tuple, new tuple)
1 if prev tuple = NIL then
2 page ← table.first page

3 else
4 page ← prev tuple.page

5 if page = NIL OR NOT page.frozen then
6 SIMPLE-ADD(table, prev tuple,new tuple)

4

7 else
8 pending add ← new pending add()
9 pending add .tuple ← new tuple

10 new tuple.pending op ← pending add

11 page.add pending(pending add)
12 page.add after(prev tuple, new tuple)

REMOVE-TUPLE(tuple)
1 page ← tuple.page

2 if NOTpage.frozen then
3 SIMPLE-REMOVE(tuple)
4 else
5 old pending op ← tuple.pending op

6 page.remove pending(old pending op)
7 if old pending op is a pending add then
8 page.remove(tuple)
9 free tuple

10 else
11 pending remove ← new pending remove()
12 pending remove.tuple ← tuple

13 tuple.pending op ← pending remove

14 page.add pending(pending remove)

COMMIT-TUPLE(tuple)
1 page ← tuple.page

2 if NOT page.frozen then
3 SIMPLE-COMMIT(tuple)
4 else
5 old pending op ← tuple.pending op

6 if old pending op is a pending add then
7 SIMPLE-COMMIT(tuple)
8 else
9 # old pending op is NIL

10 pending commit ← new pending commit()
11 pending commit .tuple ← tuple

12 tuple.pending op ← pending commit

13 page.add pending(pending commit)

Note a few things:

• Remove and commit are always performed directly on
tuples with a pending add. This can be done because a
tuple with a pending add is not included into the check-
point, and can be modified without changing the result-
ing checkpoint image.

• A pending commit is overwritten by a pending remove.
There is no point in committing a tuple if we immedi-
ately remove it afterwards.

• A frozen page may not be joined with a non-frozen
page. The page.should join() method must
take this into account.

• Pending operations never cause pages to be split or
joined.

3.2 Checkpointer

The checkpointer is a special thread that periodically
checkpoints the database. There are different ways of trig-
gering the beginning of a checkpoint. In Solid, a checkpoint
is started whenever the transaction log has accumulated a
certain amount of records since the last checkpoint.

In a checkpoint, all pages that are frozen (i.e., were dirty
at the beginning of the checkpoint) are backed up. To pre-
serve checkpoint consistency, we must ignore any changes
performed after the checkpoint began. Incidentally, those
are exactly the pending operations, described above.

The checkpoint method is described as follows.

MAKE-CHECKPOINT()
1 BEGIN-CHECKPOINT()
2 for page ∈ frozen pages do
3 disk page ← new disk page()
4 disk page.tableid ← page.tableid

5 for tuple ∈ page.tuples do
6 pending op ← tuple.pending op

7 if pending op = NIL OR

8 NOT pending op is a pending add then
9 disk page.copy to(tuple)

10 if NOT tuple.committed then
11 disk page.copy to(tuple.statemend id)
12 disk page.copy to(tuple.transaction id)
13 disk page.write to disk()
14 for pending op ∈ page.pending ops do
15 tuple ← pending op.tuple

16 switch type of pending op

17 case add :
18 # nothing
19 case remove :
20 page.remove(tuple)
21 free tuple

22 case commit :
23 tuple.committed ← TRUE

24 delete pending op

25 if there were any pending operations then
26 page.dirty ← TRUE

27 if page.should join(page.predecessor) then
28 page.join(page.predecessor)
29 elseif page.should join(page.successor) then
30 page.join(page.successor)
31 else
32 while page.need split() do
33 page2 , page ← page.split(50%)
34 page2 .dirty ← TRUE

35 else

5

36 page.dirty ← FALSE

37 page.frozen ← FALSE

38 write page directory to disk
39 write checkpoint header to disk
40 for page ∈ all written pages do
41 free the old disk page of this page

MAKE-CHECKPOINT is a rather long algorithm, so we
break it down:

Lines 3 - 13 perform the actual disk writing. A new disk
page is allocated, and for all tuples that do not have a
pending add, the tuple is copied to the disk page. After
all tuples are copied, the page is written to the disk.

Lines 14 - 24 make any pending operations on the page
permanent.

Lines 25 - 37 set the page dirty and frozen status. If there
were any pending operations on the page, the page is
set dirty, otherwise it is clean. All pages are unfrozen.

Lines 38 - 39 finish the checkpoint by writing the page di-
rectory, and finally the checkpoint header to the disk.
The checkpoint header contains information like the
location of the transaction buffer and the page direc-
tory. The checkpoint header is written to a known lo-
cation on the disk, is always written atomically, and
always replaces the old header. After the header has
been physically written, the checkpoint is complete.

Lines 40 - 41 free the old disk pages for all pages that were
written in this checkpoint.

A disk page represents a memory page on the disk. We
create a disk page by allocating it from the disk, allocating a
physical page buffer for the page data, copying the contents
of the memory page to this buffer, and writing the buffer to
the disk page. After the buffer has been written to the disk
page, it is released.

For tuples that have not yet been transaction committed,
the id’s of the transaction and statement that created the tu-
ple are written to the disk. These are needed in recovery,
to restart the transactions that were open while the check-
pointing began and the storage was frozen.

Even if MAKE-CHECKPOINT does some CPU in-
tensive operations, most of the time is spent in
write to disk(), waiting for the IO to finish. To make
checkpointing more efficient, we facilitate a cyclic buffer
for the page buffers. The write to disk() method
queues the buffer for writing, and the checkpointer moves
on to process the next page. Only when a certain amount of
page buffers are already queued, the write to disk()
blocks until the cyclic queue has more room again.

When making the pending operations permanent on a
page:

Pending add requires no immediate processing, only the
pending operation is removed. The tuple is already in
its right place on the page, and making the add per-
manent just changes the amount of space used by the
tuples on the page, and may trigger a page split later in
MAKE-CHECKPOINT.

Pending remove causes the tuple to be removed. This also
reduces the amount of space used by the tuples on
the page, and may trigger a page join later in MAKE-
CHECKPOINT.

Pending commit causes the tuple to be flagged as commit-
ted. This affects the amount of space taken by the tu-
ple, because the statement and transaction id’s for this
tuple are no longer needed. Similarly to a pending re-
move, making a pending commit permanent may trig-
ger a page join later in MAKE-CHECKPOINT.

To illustrate the effects of making pending operations
permanent, Figure 5 shows the situation after the pending
add of Figure 4 has been made permanent, and Figure 6 de-
picts the situation after the pending remove has also been
made permanent.

p1

r1 r2 Troxies

Pages

Tuplest2t1’t1

PendingsRem

Figure 5. After pending add

p1

r1 r2 Troxies

Pages

Tuplest2t1’

Pendings

Figure 6. After pending remove

3.3 Semi-fuzzy extension to SIREN

The main problem with SIREN checkpointing is the ex-
tra memory consumption caused by the pending removes.

6

It is possible for the pending removes to cause over 10%
memory usage overhead (see Section 4.1). To limit extrane-
ous memory consumption of pending removes to just a few
pages, we introduce a “semi-fuzzy” extension to the SIREN
checkpoint algorithm. The extension breaks the consistency
of the actual database pages, like in a fuzzy checkpoint, but
includes the necessary information to bring the pages back
to a consistent state in the checkpoint itself.

Whenever a pending remove occurs, the target tuple is
actually moved from its page to a special pending removes
buffer. Because the tuples have been detached from their
pages and thus from their tables, it is necessary to record
the table id of all the tuples in the pending removes buffer.
We call these kind of pending removes “direct pending re-
moves”.

The Figure 7 illustrates a direct pending remove of the
case in Figure 4. The tuple t1 is removed from the page
p1, even if p1 is frozen, and added to the pending removes
buffer. The table id of t1 (and p1, which is the same table
id) is stored separately.

p1

r1 r2 Troxies

Pages

Tuplest2t1’

t1

PendingsAdd

Pending removes buffer

table id
of t1

Figure 7. After a direct pending remove

Whenever the pending removes buffer has enough tuples
to produce a full disk page, a disk page is allocated, and as
many tuples (along with table id’s and possible statement
and transaction id’s) as fit a page are written to the disk
page. The resulting “pending removes disk page” is queued
for disk writing, and the copied tuples are removed from the
pending removes buffer. The pending removes disk page
is added to the checkpoint, and flagged as a pending re-
moves disk page in its header, to distinguish from actual
tuple pages. Intuitively, this is the optimal way to write
pending removes, because as long as the disk can keep up
with updates the extra memory usage caused by pending re-
moves is limited to a few pages.

To implement the extension, we must change REMOVE-

TUPLE and the checkpointer.

FUZZY-REMOVE-TUPLE(tuple)
1 page ← tuple.page

2 if NOT page.frozen then
3 SIMPLE-REMOVE(tuple)
4 else
5 old pending op ← tuple.pending op

6 page.remove pending(old pending op)
7 page.remove(tuple)
8 if old pending op is a pending add then
9 free tuple

10 else
11 pending removes buffer.add(tuple)
12 page.pending dirty ← TRUE

In the checkpointer, we need to flush the pending
removes buffer whenever it has accumulated enough
tuples to fill a disk page. To do this, we add a call to
FLUSH-PENDING-REMOVES e.g., between lines 2 and 3
of MAKE-CHECKPOINT. In addition, we must be sure
all pages that had pending removes are marked dirty after
being written to the checkpoint. Because no pending
remove operations are recorded, we use the pending dirty
flag that counts as a pending operation on line 24 of
MAKE-CHECKPOINT.

FLUSH-PENDING-REMOVES()
1 while pending removes buffer.enough data() do
2 disk page ← new disk page()
3 disk page.tableid ← NIL

4 tuple ← pending removes buffer .first tuple

5 repeat
6 disk page.copy to(tuple.tableid)
7 disk page.copy to(tuple)
8 if NOT tuple.committed then
9 disk page.copy to(tuple.statemend id)

10 disk page.copy to(tuple.transaction id)
11 pending removes buffer.remove(tuple)
12 free tuple

13 tuple ← pending removes buffer .first tuple

14 until tuple = NIL OR NOT disk page.fits(tuple)
15 disk page.write to disk()

The NIL tableid on the disk page is used to denote that
each tuple on this disk page has its tableid attached to the
tuple.

Notes on the semi-fuzzy extension:

• Whenever a new checkpoint is taken, any pending re-
moves pages from the previous checkpoint become ir-
relevant, because all pages that had tuples moved to
pending removes pages were marked dirty, and were
rewritten in the new checkpoint.

7

• The algorithm description above does not perform
page joins when making direct pending removes, but
leaves page joining for the checkpointer. It is possible
to join two frozen pages because of a direct pending
remove.

• It is possible to flush some of the tuples on the pending
removes page to the empty space at the end of a regular
tuple page. The page header must indicate a location
where the tuples with their own tableid’s begin, and
we must record the checkpoint number of the pend-
ing removes to determine if they are still valid when
recovering the page.

3.4 Recovery

To recover from a checkpoint, the pages contained in
the checkpoint are read from the disk, and the logical page
structures are recreated in main-memory. The indexes are
also recreated. For each tuple, if the tuple was created by
a transaction that was open when the checkpoint began, the
tuple contains the transaction and statement id’s. The id’s
are used to reopen the transaction in recovery, and to add
the tuple to the transaction. After the checkpoint has been
completely loaded, all the transactions that were open and
had made any writes when the checkpoint began, are again
open. From this state we can either roll forward the transac-
tion log, completing the transactions that were succesfully
committed and logged, or skip the transaction log. In either
case, the transactions that are left open are aborted, and the
recovery is completed.

The transaction log roll forward can be performed in two
ways; by scanning the log for commit marks and then ex-
ecuting only succesfully committed transactions and state-
ments, or by reopening each transaction and statement as
it is encountered in the log and either committing or abort-
ing the transaction, according to the log. When most of the
transactions and statements commit succesfully, the latter
method is not significantly slower than the first one. In ad-
dition, the latter method allows for the log to be processed
in a single pass, facilitating logging to another DB node and
recovery of the log stream in that node.

3.5 Analysis of SIREN checkpoint method

To verify that SIREN never blocks transaction process-
ing for a disk access, we need to consider the MAKE-
CHECKPOINT algorithm in Section 3.2. The only time the
checkpointer requires a write exclusive access to the SIREN
main-memory storage (Section 2) is when making a disk
page in lines 3 - 11. This is a read-only operation with re-
spect to the storage (the only place written to is the disk
page buffer, and the transactions never see those), and trans-

actions may concurrently read the storage, but not write to
it.

The disk page creation is a main-memory-only operation
requiring no disk access. When the checkpointer is writing
to the disk on line 12 of MAKE-CHECKPOINT, it requires
no access to the storage, and transactions are thus free to
both read and write the storage. If needed, it is possible for
transactional write to pre-empt the disk page creation for
immediate write access to the page being checkpointed. As
the page is still frozen for checkpointing, the transactional
write on it produces a pending operation, not affecting the
page’s disk page image. Thus, the creation of the disk page
can continue from where it was pre-empted. The cost of
each operation is given in Table 1.

Operation Single Pre- Am.
cost empt cost

ADD-TUPLE

Building the new tuple O(St) no
Adding tuple to page O(1) no
Page split O(Sp) yes O(1)

REMOVE-TUPLE

Removing tuple from page O(1) no
Page join O(Sp) yes O(1)
Freeing tuple O(1) no

ADD-TUPLE while checkpointing
Building the new tuple O(St) no
Adding tuple to page O(1) no
Page split O(Sp) yes O(1)
Producing pending op O(1) no
Executing pending op O(1) no
Disk page creation O(Sp) yes O(1)

REMOVE-TUPLE while checkpointing
Removing tuple from page O(1) no
Page join O(Sp) yes O(1)
Freeing tuple O(1) no
Producing pending op O(1) no
Executing pending op O(1) no
Disk page creation O(Sp) yes O(1)

Table 1. Summary of operation costs

In addition to achieving disk-independent operations, the
SIREN checkpointing and data storage combines the trans-
action shadow area with the checkpointing and recovery
method. The transaction shadow areas are stored in the
troxies on the indexing level, and the new tuple versions
are included into the storage and thus to the checkpoint im-
age as well. It is thus possible to recover the shadow areas
from the checkpoint image, reopening the transactions as
described in Section 3.4. Because of this, no transaction
log from before the checkpoint began is ever needed in the
recovery, making the recovery more straightforward.

8

4 Comparison with the previous work

In this section we compare SIREN first with other con-
sistent checkpoint methods, and then with fuzzy methods.
In Section 5, experimental benchmark results are presented.

4.1 Comparing SIREN to other consistent check-
point methods

When investigating the consistent checkpoint algo-
rithms, we discard the black/white algorithm [3] and any
algorithms requiring quiescence, because they clearly vio-
late our disk independence requirement. These algorithms
cause write transactions to wait for disk access, or possibly
even abort transactions due to checkpointing.

Only the copy-on-update algorithm [3, 13] gives us a
consistent checkpoint solution that satisfies the disk inde-
pendence constraint. Comparing copy-on-update to SIREN,
the difference is in the granularity of duplication during a
checkpoint. Where copy-on-update copies a whole page, in
SIREN, only a single tuple is duplicated.

Considering a transactional update that updates frozen
(the term as such is applicable to copy-on-update as well,
meaning data on a page that is to be included in the current
checkpoint, and has not been copied) data, the operation
must copy the whole page. This is a much heavier operation
than only producing the new tuple value, although it is inde-
pendent of any disk access, and thus meets our requirement
for disk independent operation. Further operations writing
to the same page can do so without any extra copying, but
there are no guarantees that such operations are forthcom-
ing. Copying a hole page at a time adds to the uncertainty
of a write operation’s execution time.

To begin our analysis of the memory usage overhead of
SIREN checkpointing, we define the parameters of our sys-
tem in Table 2.

Parameter Typical Used
values value

tuple size St 100B - 3kB 300B
page size Sp 16kB - 64kB 16kB
page size Np 38 - 152t 38t
page fill ratio F 50 - 100% 70%
disk write speed Rd 30MB/s per disk 30MB/s
disk write speed Rc 70000 tuples/s 70kt/s
update rate Ru 10k - 100k t/s 50kt/s
database size Sdb 200MB - 20GB 2GB

Table 2. System parameters

Recall from Section 3.3 that the operations causing
memory usage overhead during checkpointing are those that
produce pending removes, namely UPDATE and INSERT.

We define our system as having a checkpointer and an up-
dater. The updater either updates or deletes tuples in certain
order, producing pending removes.

For now, we only consider full checkpoints of the whole
database. Although rare in practice, they are the worst pos-
sible case. We also consider only the case where updates
are ordered randomly into the database.

The number of tuples duplicated after time t with SIREN
is given by the equation

Nd(t) =

(Nt − tRc)

(

Nt −Nt

(

Nt−1

Nt

)tRu

)

Nt

(1)

To compare, the number of duplicates after time t with
copy-on-update is given by the equation

Nd(t) =

(Nt − tRc)

(

Nt −Nt

(

Nt−Np

Nt

)tRu

)

Nt

(2)

Because of the exponent functions, we give only numer-
ical comparison of the two. The results are shown in Figure
8, and in Table 3.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 20 40 60 80 100

nu
m

be
r

of
 d

up
lic

at
es

time

per-page: 100k updates/s
per-page: 50k updates/s
per-page: 20k updates/s
SIREN: 100k updates/s
SIREN: 50k updates/s
SIREN: 20k updates/s

Figure 8. Number of duplicates as a func-
tion of time with SIREN or per-page copy-on-
update

4.2 Comparing SIREN with fuzzy checkpointing

The fuzzy checkpoint methods meet our disk indepen-
dence requirement by simply allowing transactional updates
independently of any checkpointing activity [13, 5, 1]. Al-
though single write actions may be mutually exclusive with

9

Update rate COU overhead SIREN overhead
100k/s 92% 26%
50k/s 85% 15%
20k/s 71% 6.7%
10k/s 57% 3.5%
5k/s 40% 1.8%
2k/s 19% 0.7%

Table 3. Summary of memory usage over-
heads with random updates on per-page
copy-on-update

the checkpointer, the need for waiting for disk access can be
easily avoided by proper buffering. For example, a write ac-
tion on a page my be blocked while the checkpointer copies
the page to a disk buffer, but allowed while the page is ac-
tually written to the disk, like in SIREN.

Besides some static disk buffers, fuzzy checkpointing
has no memory usage overhead. However, neither has
SIREN with semi-fuzzy, if the disk can keep up with the
update rate. If the disk cannot keep up, fuzzy checkpoint-
ing also gets into trouble with its mandatory logging.

Comparing the performance critical parts of disk writing,
in fuzzy checkpointing there is the transaction log, and in
SIREN, the transaction log and the pending removes pages.
With fuzzy checkpointing, the transaction log is a physical
undo/redo log, meaning that both before- and after-images
must be present [4]. The transaction log must be written for
all updates on the database, and thus two tuples per update
must be written to the disk.

With SIREN, the optional logical redo-only transaction
log for an update requires only the tuple id (typically the
clustering key value) of the old tuple, and the after-image.
With both logging methods it is possible to compress the
after-image by including only the field values that have
changed. Whether or not the compression is used, the phys-
ical log record contains a full tuple more than its logical
counterpart. SIREN thus offers a better logging perfor-
mance compared with fuzzy checkpointing.

In addition to logging, SIREN requires efficient writing
of the pending removes pages to the disk. However, not all
updates produce a pending remove. A second update on the
same tuple never produces a second pending operation, and
updates on non-frozen pages are always performed directly
without pending operations. Each single update can pro-
duce at most one pending remove, meaning one tuple for
performance critical disk writing.

Thus, if the after-image compression is used, fuzzy
checkpointing produces a log record header plus one tuple
image plus update delta per update, compared to SIREN’s
log header plus less than one tuple image plus update delta.

This indicates some performance benefit of SIREN.
The most significant benefit of SIREN over fuzzy check-

pointing comes from its independence of transaction log-
ging. With fuzzy checkpointing, the physical undo/redo
logging is required at least during checkpointing, whereas
with SIREN the logging is always optional. Recovery of the
log with fuzzy checkpointing is a complex operation, even
finding the recovery start position requires work, whereas
with SIREN the start position is trivially known, and the
log can be processed in a single simple pass, as described in
Section 3.4.

If logging is not used, SIREN has a clear advantage over
fuzzy checkpointing. With fuzzy checkpointing, logging
must be turned on at least while checkpointing, and it is
not possible to reduce the amount of performance critical
disk writing. With SIREN, logging can be off both dur-
ing checkpointing and otherwise, and the only performance
critical disk writing absolutely required are the pending re-
moves pages.

A seemingly negative aspect of semi-fuzzy is that it pro-
duces data to both the pending removes page and the trans-
action log for an update. However, this data does not over-
lap. On the pending removes page, the before-image is writ-
ten, whereas the transaction log contains the tuple id and the
after-image, or possibly only the delta to produce the after-
image. And the before-image is not always written at all.

5 Performance study

The database schema used in these benchmarks is the
following: a table of two integer values and one 292 bytes
long string value, making the row size of 300 bytes. ID
acts as the integer primary key, and VALUE1 (integer) and
VALUE2 (string) as a values stored with the key. While this
schema may not be useful directly, it simulates a 300 byte
record stored with an integer key, with updates performed
on a small portion of it, the VALUE1 integer field.

The results have been normalized so that 100 percent
represents approximately the highest throughput that was
achieved.

The table is created as:

CREATE TABLE BENCHMARK (
ID INTEGER PRIMARY KEY,
VALUE1 INTEGER,
VALUE2 CHAR(292)

);

The table is populated with 1,000,000 rows, with contin-
uous values 0 - 999,999 for ID, a random integer value for
VALUE1, and a random, 292 bytes long value for VALUE2.
Random ID value lower the throughput a little across the
line, but on the normalized results this would not be visible.

10

The benchmark either reads or updates random rows in
the table. The read statement is:

SELECT VALUE1 FROM BENCHMARK WHERE ID = ?;

and the update statement is:

UPDATE BENCHMARK SET VALUE1 = ? WHERE ID = ?;

The statements are prepared and re-executed for each
read/update. Each transaction consists of five reads or up-
dates, and the transactions are committed separately (auto-
commit is not used). The update transactions correspond
roughly to TCP-B, but update five rows instead of updating
three rows and inserting one.

The hardware configuration consists of:

Host 1: AMD Athlon XP 2400+: Main server host

Host 2: AMD Athlon XP 1700+: Client host

Network: Switched 100Mb/s ethernet

Operating system: Linux 2.4 on both hosts.

This benchmark compares SIREN semi-fuzzy with
fuzzy checkpointing, called Fuzzy. Fuzzy was emulated in
the Solid DBMS. While recovery algorithm was not imple-
mented, the runtime work in both checkpointing and log-
ging was implemented as if fuzzy checkpointing was used.
In all cases, the Solid DBMS server was running in Host
1, and all the clients were in Host 2. The actual parame-
ters used are listed in Table 4, and the results with different
number of clients are shown in Figure 9.

Parameter Symbol Used value
tuple size St 300B
page size Sp 16kB
page fill ratio F 53%
disk write speed Rd 30MB/s
update rate Ru varying
number of tuples Nt 1000000
database size Sdb 300MB

Table 4. Actual parameters in benchmark

The no log throughput shows the throughput when no
logging is enabled. Checkpoints are still active and taken
during the benchmark, but recovery is only possible to the
latest succesful checkpoint. If this level of durability is ac-
ceptable, it clearly offers the best performance for updates.
This method is only available in SIREN, because Fuzzy
cannot function without logging.

In the relaxed log case, the transaction logging is en-
abled, but transactions are considered and reported com-
pleted even if their log is not necessarily written to the disk.

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t,

pe
rc

en
t

Number of clients

updates, no log, SIREN
updates, relaxed log, SIREN
updates, relaxed log, Fuzzy

updates, strict log, SIREN
updates, strict log, Fuzzy

Figure 9. Throughput: SIREN vs fuzzy

This offers better durability than no log, because relaxed log
is much less behind the current transaction processing than
a checkpoint. With the relaxed logging method, SIREN per-
forms about 25% faster than Fuzzy, thanks to its redo-only
logging compared to undo/redo in Fuzzy.

The strict log case presents the performance for strict
logging, i.e., full durability, with write-ahead logging. This
performance is notably lower than any of the other methods.
Furthermore, the shape of the curve is clearly different. This
is because of the high delay associated with synchronized
disk writing involved in writing the log for each transaction
commit. The disk write delay dominates the latency experi-
enced by the clients.

Once enough clients are active, strict log gains some per-
formance due to group committing. Thanks to the ever in-
creasing commit group sizes, the performance continues to
grow after the other cases have already reached their peak.
With this logging method, SIREN and Fuzzy initially per-
form equally, but as the commit group size grows, SIREN
gains lead over Fuzzy, due to its redo-only logging. With 20
clients, SIREN gains 30% performance lead compared with
Fuzzy.

If we compare the number of performance critical writes,
discussed in Section 4.2, in the relaxed log case, Fuzzy
wrote twice the number of log records SIREN did, follow-
ing directly from the undo/redo logging method. SIREN
had to write about 27% of the amount of after images in
the log as before images (pending removes) to the check-
point, however, these before images are not performance
critical in the sense that transaction processing does not
have to wait for them to be written. They are written asyn-
chronously to the checkpoint, more efficiently than log writ-
ing. During the benchmark, the writing speed of before im-
ages was never an issue, i.e., extraneous memory was never
consumed for more than a few pending removes pages.

11

If we take the number of updates performed to be 100%,
SIREN performed 100% log writes and 27% extra check-
point writes, while Fuzzy performed 200% log writes and
0% extra checkpoint writes.

6 Implementation notes

The SIREN engine, together with the reported check-
pointing method (exclusive of the semi-fuzzy extension),
has been implemented in the commercial database product
called Solid BoostEngine, by Solid Information Technol-
ogy1. The SIREN technology has patent pending. Boost-
Engine 4.0 was released in April 2003 and was primarily
targeted at the OEM market of telecom equipment man-
ufacturers. Since then, one unique feature of the Solid’s
database product has been the inclusion of two separate
table-level engines under the hood of a common exter-
nal interface: a traditional disk-based engine, known from
its Bonsai-tree technology [11], and an in-memory engine
(SIREN). In BoostEngine, the two table engines can be used
concurrently and transparently, under the common SQL
schema and with SQL statements spanning the in-memory
and on-disk tables.

7 Conclusions and future work

The contribution of this paper is three-fold. Firstly,
the SIREN checkpointing method makes use of tuple-level
shadowing to preserve memory. Secondly, a logical page
structure facilitates efficient, copy-free, snapshot-consistent
checkpoints, and non-blocking checkpoint behavior. The
page structure also may contain dirty data without jeopar-
dizing the checkpoint consistency. Additionally, the exis-
tance of dirty data in the checkpoint simplifies the log roll-
forward at recovery. Thirdly, the semi-fuzzy extension al-
lows for optimal disk writing of pending removes, further
conserving the main memory. We have shown that the pre-
sented method conserves memory by reducing the check-
pointing memory overhead to around 10% of the overhead
inflicted by shadow paging. The overhead can be reduced
to practically zero by using the semi-fuzzy extension. Also,
the performance tests show that SIREN checkpointing out-
performs fuzzy checkpointing by about 30%, for highly
concurrent loads. Aditionally, in all presented methods, a
user has a choice whether to use transaction logging or not.

Future research topics include multiprocessor scalabil-
ity issues, storing of large objects (BLOBs), and different
cache usage related optimizations.

1http://www.solidtech.com

References

[1] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R.
Stonebraker, and D. Wood. Implementation techniques for
main memory database systems. In Proceedings of the
ACM SIGMOD International Conference on Management
of Data, pages 1–8, jun 1984.

[2] M. H. Eich. Main memory database recovery. In Proceed-
ings of 1986 fall joint computer conference on Fall joint
computer conference, pages 1226–1232. IEEE Computer
Society Press, 1986.

[3] H. Garcia-Molina and K. Salem. Main memory database
systems: An overview. IEEE Transactions on Data and
Knowledge Engineering, 4(6):509–516, Dec. 1992.

[4] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publishers, San Mateo
(CA), USA, 1993.

[5] R. B. Hagmann. A crash recovery scheme for a memory-
resident database system. IEEE Transactions on Computers,
35(9):839–843, 1986.

[6] J. Lee, K. Kim, and S. K. Cha. Differential logging: a com-
mutative and associative logging scheme for highly parallel
main memory database. In Proceedings of the International
Conference on Data Engineering, pages 173–182, 2001.

[7] T. J. Lehman and M. J. Carey. A recovery algorithm
for a high-performance memory-resident database system.
In Proceedings of the ACM SIGMOD Annual Conference,
pages 104–117. ACM Press, 1987.

[8] E. Levy and A. Silberschatz. Incremental recovery in main
memory database systems. IEEE Trans. Knowl. Data Eng.,
4(6):529–540, 1992.

[9] X. Li and M. H. Eich. Post-crash log processing for fuzzy
checkpointing main memory databases. In Proceedings of
the Ninth International Conference on Data Engineering,
pages 117–124, 1993.

[10] A.-P. Liedes. Checkpointing a main-memory database. Mas-
ter’s thesis, Helsinki University of Technology, Department
of Computer Science, Oct 2004.

[11] K. Pollari-Malmi, J. Ruuth, and E. Soisalon-Soininen. Con-
currency control for b-trees with differential indices. In Pro-
ceedings of the International Database Engineering and Ap-
plications Symposium, pages 287–296, Sep 2000.

[12] K. Salem and H. Garcia-Molina. Checkpointing memory-
resident databases. In Proceedings of the Fifth International
Conference on Data Engineering, pages 452–462, 1989.

[13] K. Salem and H. Garcia-Molina. System M: A transaction
processing testbed for memory resident data. IEEE Trans-
actions on Data and Knowledge Engineering, 2(1):161–172,
Mar 1990.

[14] S. Woo, M. H. Kim, and Y. J. Lee. Accomodating log-
ical logging under fuzzy checkpointing in main memory
databases. In Proceedings of the International Database En-
gineering and Applications Symposium, pages 53–62. IEEE
Computer Society, 1997.

12

