Proc. Internat. Database Engineering and Applications Symposium
(IDEAS 2000), September 18-20, 2000, Yokohama, Japan, IEEE
Computer Society Press, 2000.

Design of RapidBase—an Active Measurement Database System

Antoni Wolski Jorma Kuha

Tapio Luukkanen Antti Pesonen

Technical Research Centre of Finland (VTT)
VTT Information Technology
P.O. Box 1201, FIN-02044 VTT, Finland
e-mail:first-name.lastname@vtt.fi

Abstract

In data-intensive industriabn-line applicationsutilizing
live processdata, onefaces anunusual set ofdatabase
requirementsThe process measuremeuata need to be
acquired atgreat speed,organized intime seriesand made
available for time-based retrievalActive capabilities and
functional extensibility ar@eeded tamplement a flexible
data-driven processingparadigm. An difcient transaction
logging andrecoverymechanism isieeded in ordenot to
impede thedata acquisition flow. RapidBase is aystem
that meets thesesquirements. ltutilizes a main-memory
database, ainique temporal-relationatiatamodel for han-
dling time series, and aelaboratetrigger subsystem. It is
implemented as server program equippedith interfaces
of high power of expression.

1 Introduction

Although therequirementfor datamanagement is omni-
present in variousdvancedapplications, themain-stream
notion of a database may be not a hgiice inall cases.

Certain application classasquire aspecial collection of
featuresnot found in general-purposdatabasesystems.

This paper presents tliesign of RapidBase — database
system tuned to the needs of handling measuredaatin

modern industrial applications.

In complex industrial installations, such aspaper
mill, a power station, apower grid or atelecommnet-
work, huge amounts of measurement datagarerated and
need to beprocessedor the purposes of control room
processingand processmonitoring. Here, we donot deal
with the needs of the process automasgatemsbecause
they are, typically,satisfied bydedicatedequipment (like
PLCs—programmable logic controllers). On tlo¢her
hand, the needs fdhe processlatamanagement are obvi-
ous and the requirements ardoecoming moreand more
demanding.For example, in a typicapower generating
unit of apower station, thedata acquisition raterequire-
ment has grown, in few years, from a coupleghafusands

of measurements psecond toalmost tenthousandmeas-
urements per secondihe data needsiot only becollected
promptly, but alsosummarizedand visualized for the
operators, within dolerable timedelay of 1—2 s. Such
applications—the so-called process management sys-
tems—require special procedatabasesystems, such as
the one described here.

We havestudiedthe needsfor process databases, and
the technologies thereof, sind®92, in variousprojects
sponsored by industry-led consortia. In retrospectfltive
of ideas and requiremenft®m industrial partners hdseen
indispensable in achieving tlpgoperset of systenfunc-
tionality. We presented a case study and a first prototype in
[WKP96]. Since then, wehave introduced anew data
modeland amore generaldatalanguage extendedthe ac-
tive capabilitiesand addechew recoveryand extendibility
features, all of which are discussed in the sequel.

In the researchcommunity, the notion of ARCSAc-
tive Rapidly ChangingData Systems) wasintroduced
[Dat94], but no significant implementatiomgre reported
at that time. The support for time series (which teatral
concept in a procestatabasehas received more attention
[Dre94], and severalimplementations are known buhey
are mostly tuned to the needs of financial applications. The
same is true for time series extensionscommercial
databasesystems, like Informix DynamicServer (the
DataBladetechnologyacquired fom lllustra), Oracle8i and
IBM DB2 Universal Database. Verfew generalized sys-
tems for handling industrial temporalata areknown.
Some of them areeviewed inSection 8. Inresearch, the
focus has been on concurrency conamotl eal-timesched-
uling, as in [Shi+93, Gra93], f&rthan onease of per-
forming temporal operations on data.

In our time series implementation we used some of the
results produced inthe research on tempordhtabases,
including the time concept taxonomy and some of the syn-
tactical constructs of TSQL2 [Sn095].

The research oractive databases [WC96, Pat98] also
inspired our work a lot. Wantroducednew types ofdata-

base triggers to satisfy speciaeds ofprocessmanage-
ment.

The next section deals with architectural issuesSdo-
tion 3, the RQL (RapidBase Query Languageprissented,
together with theelated datanodel. In Section 4, the ac-
tive capabilities are explained, in Section 5 the extensibil-
ity features are revealedndthe recoverymechanisms are

summarized in Section 6. Section 7 contains implementa-

tion notesand performancdigures. A comparativeeview
of some commercial implementatioristended for the
same range of applications is given in Section 8.

2 Architecture

RapidBase isbuilt according to aclassic Client/Server
architecture wher¢he Serverruns in a single opating
system process and applications connect to it ®@¥®/IP
connections. Iraddition tobeing a typical Clienapplica-
tion, aprocess may register itselfith the Server as an
Action Executor application, for performingigger-in-
voked and user-writtenactions. Inorder to increase the
robustness of the systemdaliberate choicevas made for
not allowing the applications teharethe sameaddress
spacewith the Server. Consequently, tiS=rver is pro-
tected by the networlnterface layerlscanning all the mes-
sagesand detecting errorstherein. Whencompared to
shared-memory-basemblutions, thearchitecture introduces
a communications-inducealzerhead whichhowever, does
not turn out to be significant. It wasasy for us to meet
(and exceeddhe originalperformance requirements of 500
measurementipdatetransactions pesecond on a regular
PC (Windows NT)platform and atleast 1000 on dow-
cost UNIX platform.

The main application interface is a C++-based class li-
brary RAPI (RapidBase APIl)that is anobject-oriented
incarnation of the standa®iQL CLI (Call Levellnterface)
[CLI-95]. ODBC andJDBC drivers arealso available for
WindowsandJava application development, respectively.
Also, Action Executor programming intedas are avail-
able forC++ andJava.There isalso a C++interface for
developing RapidBase User-Definedrunctions (UDFs).
UDFs arecompiledinto plug-in modules (dynamidink
libraries) that are run-timéoadableinto the Server. A
number of administrator's toolsave been implemented as
Java applets.

A distinguishing feature of RapidBasetlsat its data-
base is totally main-memory-based. This allows for single-
digit millisecond responséimes. Thedatabase idacked
up on disk using an optimized transactiogding method
described in Section 6.

3 RQL Data Model

Originally, theidea ofusing SQL as a basi®r our de-
sign, came fromour industrial partners. Thewere con-
cerned about thissues of a learningurve andsupply of
trained programmers. They felt aBQL-based system
would be easier to introduce the engineerghan, for ex-

ample, an object-oriented databa3ée decisioncan be
appreciatechow when one sees how easy it isfilb a
spreadsheet with the measurement datdhow anad-hoc
ODBC-basedvisualBasic application is just faw mouse
clicks away.

A shortcoming of SQL from our point of view was the
lack of support for time serieSo, wedesignedRQL—a
language based 0BQL-92 [SQL-92], with extensions for
time series support. Weroposedthe first model in
[WKP96]. A new, improved model is presented in this
paper. It has thadvantagethat it folds into a relational
model in the absence of temporal data.

3.1 HISTORY column type

The time series support encapsulated in special RQL
column type called HISTORY. A value of type HISTORY
is a nested table of its own, as can be seen in Ridnete

a base table with two history columns is shown. The gray
table seen in théoreground offFig. 1represents an SQL
view of the RQL table—it is a snapshot table comprising
the currently valid column values. This SQL viewcadled
acurrent viewof the RQL table. In the same timgrevi-
ous values of history columns are stored as time series and
are accessible through extended syntdus, for a tempo-

ral RapidBase table, there always exists 3@ view and
the RQL view, and they may hesedinterchangeably. The
system maintains identity of rowsnd the temporal in-
formation, by introducingimplicit columns shown in
light gray, in Fig. 1.The OID (objectidentifier) columns
are used for automatically assignedv and subrowidenti-
fiers. Each(history column) subrow(called ahistory re-
cord) carriesalso two timestamps (OT&8nd OTS_END)
usedfor denotation of the subrow\wlid time. Theuser
need not todefinethe implicit columns, or supplyalues
for them.

vase
column

HISTORY
column
VALID
2000-02-13
14:02:01.000

Ny
/// .

t — VALID NOW
. 4 «

oD . ¢
0oT8
.OTS!END

0ID
0TS
.OTS_END

oD

Fig. 1. An RQL table with two history

columns.

Assume the table in Fig. tepresents aet oftemperature
probes. The tableanthen becreatedwith the following
definition statement:

CREATE TABLE tempr_probes (
probe_id CHAR(8),
name VARCHAR(80),
type CHAR(10),
measur_h HISTORY (
tempr FLOAT,
quality SMALLINT
) SIZE 10000,
scale INT,
state_h HISTORY (
state CHAR(8)
) SIZE 1000

)

The logical structure of the table dfferent fom agener-
alizedtemporaldatamodellike TSQL2 [Sno95] in that a
user may choose which columns are of a snapshtire
(basecolumns)andwhich ones have temporeharacteris-
tics (history columns). Anothatifference isthe introduc-
tion of subcolumns. The justification for this is that, very
often, measurementata is acquired agalue vectors that
needs to be treated as identifiabldts in subsequenproc-
essing.Instances othistory columns mayhave different
sizes (in terms of number or historgcords),but the
maximum size (user-defined or default) cannot be exceeded.

3.2 Temporal semantics

Although a history column resembles andinary table, it
maintains special semantics whican be summarized in
the following way:

The size (cardinality) of a history is fixed (note the
SIZE clause in the example; if it is omitted, a default
size is used). When the history becomes full, the size
is maintained by replacing the oldest history record
with the latest one (the circular buffer principle). If

the old history data are not to be lost, active objects
calledarchiversmay be defined and enabled in the da-
tabase, with the purpose of moving the outdated data
to some other medium. The absolute size limit may
seem a strong measure but it allows to control the da-
tabase size buildup accurately.

The history records are ordered chronologically, based
on their valid time. The latest record belongs to the
current view of the database.

All the subcolumns are accessed using the dot nota-
tion, e.g. " measur_h.ots, measur_h.tempr".

History columns contain implicit timestamp subcol-
umns that can be accessed in queries:

.OTS: the beginning of the record's valid time (user
or system supplied); .OTS_END: the end of the re-
cord's valid time (derived).

RapidBase database is \alid-time temporal database
[Jen92]. Consequently, all temporal joins are also valid-
time joins. There is a notion @flid time associated with
each historyrecord. Avalid time of a historyrecord is an
(absolute) timeperiodfor which the values in the history
record reflect the modeled reality. The user usually supplies
the value of the valid-time stapbint, in the form of the
measuremeniimestamp (the .OTS subcolumn). The sys-
tem automatically maintains thendpoint value which is

a time point justbefore(with the system time resolution
of 1 ms) the value of the timestamp of the chronologically
following record. The valid time of the latest histoegord
extends up tathe currenttime, depicted asNOW in the
RQL parlance. The valid-timendpoint of arecord is al-
ways accessibleia the implicit subcolumn .OTS_END.
The values of this column are not stored—theydereved
from the database atun-time. If an .OTSvalue is not
supplied with the measurements, the system automatically
assigns .OTS th#ansactiortime. Effectively, this leads

to automatic translation frormransactiontime [Jen92] to
valid time.

The most convenient way to specify tempasaarch
conditions is to use th&/ALID predicate. With the
VALID predicate, one can specifytime points, intervals
and periods, to restrict the temporal query.

The RapidBasetemporal table model foldgto the
standardSQL table model, whestandardSQL statements
are usedThis results from the RQL convention that the
VALID predicate isalways present (explicitly or implic-
itly) in a SELECT statement. If it is not explicitlspeci-
fied, the default form is "VALID NOW". With, VALID
NOW, the table ofig. 1 is reduced tothe current view
table shownshaded ingray. For example, thstandard

SQL query

SELECT probe_id, name
FROM tempr_probes
WHERE state_h.state ='ON’;

is restricted to the current view of the tablecause of the
default VALID predicate.

An absolute valid-timepoint may bespecified in
RQL, as in

SELECT probe_id, name, state_h.state,
measur_h.tempr

FROM tempr_probes

WHERE VALID '1998-02-13 14:02:01.000

In this case, the valid-timgoin is performedbetween the
two history columns gtate h and measur_h). In
multi-table joins, thevalid-time join is conceptually per-
formed before applying other join conditions.

There arevarious ways to specify a valid-time interval
of your interest. In the followingjuery, all the measure-
ments of the last minute are retrieved if their prekse
was 'ON":

SELECT ots, ots_end, probe_id, name,

measur_h.tempr

FROM tempr_probes
WHERE state_h.state ='ON'
AND VALID FROM NOW — INTERVAL '1' MINUTE;

It is also possible to "sample" thguery result with a
given time resolution. If we araterested in retrieving the

The result of executing the statement is the introduction of
a new (current) historyecord inthe history. Theprevious
current record becomes (chronologically onepreceding

the currentone. It may beaccessed bwsing aVALID
predicatewith a correcttime point value, but it is not

measurement data in 10 s time steps for the latest hour, W ccessible any morevith the standard SQL SELECT

would say:
SELECT ots, probe_id, state_h.state,
measur_h.tempr
FROM tempr_probes
TIMEPOINT SERIES INTERVAL '10' SECOND
WHERE VALID FROM NOW — INTERVAL '1' HOUR,;

3.3 Result table format

All columns potentiallyavailable in agueryaccessing the
example table "tempr_probes" are shown in Fig. 2.

OTS_END .OTS_END .OTS_END

oTs 0TS ots |
[e]]n] .0ID I .0ID I
| i - ;
Eas L
L1 J | J
1

NN\

Fig. 2. Implicit (light gray) and explicit
(dark gray) columns available in the
result table.

The column names OT&dOTS_ENDfound in the two
last queryexamples are virtual columns of the resset.
They indicatethe syntheticvalid time of the result row.
The values of the columns agalculatedfrom the OTS
values of the histories composing the temporal j&iig.
2 depictsall the implicit and explicit columns of the

example table, potentially available in the query result set.

It was adeliberate choice to represeqtery results as
"flat" tables. Thanks to thastandardtools for result set

processing, such as ODBC and JDBC may be used. The re-
sult set can be sorted with the standard ORDER BY clause.

3.4 Data acquisition in RQL

Adding new data to measurement histories is done by

updating the current view rows. gtandardSQL UPDATE
statement suffices, as in:

UPDATE tempr_probes
SET measur_h.tempr =134
WHERE probe_id = TEMP34'

statement.

In RQL, new statementwere introducedor maintaining
existing histories. For example, the history recaas be
changed with the UPDATE HISTORY statememid they
are removedvith the DELETEFROM HISTORY state-
ment. Also, INSERT INTO HISTORY was considergor
inserting history records "into the past"), but has lesn
implemented yet.

4 RapidBase Triggers

The RapidBasdrigger subsystencovers abroadrange of
active databasecapabilities. RapidBasetriggers arebased
on the classic ECA (event-condition-action) model
[MCD89]. In their simplest form, they follow thigigger
definition syntax of the SQL-9%tandard[SQL-99]. In
RapidBase, various extensions have been made toatie
ECA trigger model. As most of them adescribed else-
where [WKP96, WB98] , only a summary is given below.

Multiple condition-action blocks
This simple syntax extension allows for more
expressive triggers. For a single event type, it is pos-
sible to define a control structure to invoke alterna-
tive actions (or action sets) depending on the evalua-
tion of the conditions. With the following trigger,
the two abnormal probe states are set (and reset to
NORMAL) when the measurement values exceed
given thresholds:

CREATE TRIGGER Setting_states UPDATE OF
measur_h ON tempr_probes
WHEN OLD.measur_h.tempr <= 1000 AND
NEW.measur_h.tempr > 1000
DO SET state_h.state = "OVERHEAT"
WHEN OLD.measur_h.tempr >= 900 AND
NEW.measur_h.tempr BETWEEN 0 AND 900
DO SET state_h.state = "NORMAL"
WHEN OLD.measur_h.tempr >= 0 AND
NEW.measur_h.tempr <0
DO SET state_h.state = "FREEZE"
WHEN OLD.measur_h.tempr <10 AND
NEW.measur_h.tempr BETWEEN 10 AND
1000
DO SET state_h.state ="NORMAL";

The SET statement is a simplified version of
UPDATE (it is just the SET clause). It is used for
changing values in the triggering row.

Built-in composite events
Instead of supporting a generalized composite event

language, a few pre-defined composite event types are
available. They are modeled after well-known
notions, like timers and counters. Timer and counter gytarnal actions

triggers were presented in [WKP96]. AN alarm state External actions are asynchronous invocations of pro-

column is assigned a new value, resulting from the cedures in external programs. They run in a detached

following timer trigger, when a probe value has been mode, i.e. outside of the triggering transactions. The

over a given threshold for more than 10 minutes: intended use of external actions is mostly data and

event dissemination to autonomous applications.

CREATE TRIGGER External actions represent a true "push" paradigm,

Delayed_overheat whereby the Server invokes (in a general case) a mul-
TIMER ON tempr_probes ticast transmission to Clients. The CALL statement
SET INTERVAL 10" MINUTE is used to invoke external actions, like in

START ON UPDATE (
measur_h.tempr > 1000)

CLEAR ON UPDATE (DO CALL ProbeControl.Over_heat(h.temp)
measur_h.tempr < 900)

DO SET state_h.state =

"OVERHEAT", whereby theOver_heaimethod is invoked at the
Action Executor process call&@tobeControl

The CLEAR clause nullifies the timer when a sepa-
rate condition is satisfied. 5 User Defined Functions

Fuzzy triggers
The power of fuzzy inference is utilized in fuzzy trig-
gers [WB98, Bou+97]. I€-fuzzy(condition-fuzzy)
triggers, fuzzy rule sets may be used in the condition
evaluation. INCA-fuzzy(condition-action-fuzzy)
triggers, the action part contains a fuzzy inference
block which is evaluated to select a concrete action.
Implementation ofuzzy eventlBW97] was consid-
ered but has not been carried out.

The RapidBase Server can fumctionally extended at run-
time with User Defined Functions (UDFs) which aser-
written C++ methodscontained within dynamic link
libraries. UDFscan be used inwo ways: as functions
(which return a value) IRQL expressionsand as proce-
dures(which do notreturn a value) in internatrigger
actions. Both typesan also bedirectly invoked byCli-

ents. Functions and procedures can be written to accept any
(even variable) number of parameters of &L type. In

Trigger variables the following sample of an RQL script, a UDkamed
Trigger-scoped variables allow passing results of "smallest" is defined in the databaseed in an expression
arbitrary queries to other components of a trigger. and, finally, dropped:

Set-oriented variables (collections) may be also
fuzzy-quantified using quantifiers like "few", "most", CREATE OR REPLACE FUNCTION smallest

etc. Values for collections are supplied with EXTERNAL NAME ‘Smallest

SELECT statements as in: IN“demodiL.l;

UPDATE foobar
_ SET field1 = smallest(field2, field3,
VAR COLLECTION temperatures = 3.14159)

(SELECT measur_h.tempr FROM tempr_probes) WHERE foo,_id = 101;

DROP FUNCTION smallest;
Internal actions
Internal actions comprise of RQL statements and

user-defined procedures, and they are run in the same
isolation unit (transaction) as the triggering state-

The RQL syntax fomccessinghe external functionge.g.
registering them to the Server, executiagd dropping
them) follows the example of existingpmmercialprod-
ment. They are executed in the deferred mode (at the UCtSandthe SQL-99standard However, while thecom-

end of the transaction). User-defined procedures mercial implementations typicallglefine a C Iangl,!age
(UDFs) are called with the EXEC statement, like the interface betweethe Serverandthe DLL, RapidBase im-

following one calculating a one-minute average of a ~ Plements &lass-based++ interface. Acommon header

history subcolumn and storing the result into another fil€ definesthe CallContextclass which containmethods

column: the UDF implementation uses for retrieviitg parameters
and their types, for passing resutack tothe Server, and

for accessing other Server functionality.

DO EXEC average_1min('measur_h.tempr’, The implementation allows forebinding (reloading)

‘aggr_h.value') the functions "on-the-fly'even if they arespecified in the

action part of a trigger (or some otlge-compiled state-
ment).

Multiple operating systemgWindows NT, Linux,
HP/UX) are supported through encapsulation of OS-
dependent partsThe multi-platform support fotJDF's
was inspired by [Roe99].

6 Recovery with adjustable durability

The automatiadecoverymechanism uses checkpoint files
and aredo-log[GR92]. No undo log isneededbecause a
shadow-based updateethod isused (aworking copy of a
row is createdfor the time of processing thieansaction).
The policy of redo logging is tunable todurability
requirements. Thasual WAL (write-ahead-log)policy is
available by way of the standa8DL statement COMMIT
WORK. This giaranteesfull durability but it compro-
mises the response time. For gake of rapidly changing
data, amore efficient asynchronougolicy (inspired by
[JSS93]) wasntroduced,too. The statemen€COMMIT
LOGGER results in the asynchronous flushing of the
memory-resident transactiofog to disk. Evenmore
relaxedlogging is available. If no COMMIT statements
are used, théog is flushed to disk periodicallyfollowing
a default(e.g. 5 s) or aspecifiedtime interval. Both the
logging andautomatic checkpointing may be also totally
disabled.

The relaxed logging policies are meant toused with

accepting up tol000 UPDATE transactionger second.
Simple SELECT statements aexecutedwithin single
millisecond responstme range. Theabove figures were
obtained in the operationalmode whereby each RQL
statement was fully run-timénterpreted bythe Server.
Performance improvements are expected wherso-called
PREPARE processing (i.e. statement precompilatrafi)
be implemented in thenear future. Additionally, the
practicaldataacquisitionperformancemay bedramatically
improved by using user-defingooceduregUDFs) for that
purpose. In aecenttest, a throughput dd 000 pre-com-
piled UPDATE satements pesecondwas attained from
within a UDF.

An execution time of a typical trigger witinternal
actions is within 0.1 ms. For example, this results in the
update rate of 900 updates pecond if each updafees a
trigger. Theachieved performance dfiggers stems from
the fact that triggers are pre-compiled, includihg condi-
tion and action parts. The same principle applie&itay
triggers. The execution time of fazzy trigger with at
most 32fuzzy rules is within 0.5 msand scales linearly
with the number of rulegfor more onfuzzy trigger per-
formance, see [Bou+97]). Theress on triggeperform-
ance reflectghe ideathat the primary responsibility of
RapidBase is intended to be actiwenitoring of ndustrial
processes.

Performance of RapidBassas demonstrated in the
implementation of the Rubic Real-time OLABngine

measurement data streams of high density. This may resul{Kiv+99] where aload of hundreds of updateansactions

in loosing of a value or two, in a crash, but the lnesd
not be significant from the temporal consistency point of
view.

7 Implementation, performance and utiliza-
tion

The central part othe software, theRapidBase Server is
written in C++ in aplatform-independentvay. Currently,
versions forwindows NT, HP-UX and Linux are avail-
able. A subsystem initializatioframework, that is acti-

and thaisands of trigger executions pggcondwas sus-
tained on the reference platform.

RapidBase is cuently beingused in severagpilot imple-
mentations in Finlanénd, recentlyalso in France. The
applications are, among others, a telecomm protanai
lyzer, traffic monitoring in a telephone switchydro-elec-
tric power station simulatorand aweb breakage seits/-
ity indicator in a paper machine.

The most notable commercializatieffort is emerging
from the cooperatiorwith ABB Industry, a leading sup-
plier of industrial high-powerdrive systems. A typical

vated upon startup, has made it possible to decompose thgppjication involves a drive system ofapermachine. It

system into compile-timeonfigurable modules (subsys-
tems). For example, thiezzy trigger subsystem may be
included or not, in the final executable build. T$w@ution

comprises of up to oneundred(mostly AC) eletric mo-
tors together with the relatedefluencyinverter equipment,
automatic controhnd adiagnosticsystem. Thenew gen-

legal RQL syntax always casponds tahe functionality
of a given configuration. lmddition tocompile-timecon-
figurability, the Server's functionality may tw®ntrolled
by way of startup parametedynamiccontrol commands
and user-defined functions and procedures.

Because nacompositebenchmark exists fothe type of
applicationsRapidBase is intended for, waresentonly
some selective performance figures here, essenteilied
to executing UPDATE statements on histories.

On a referencelatform of 200 MHz Pentium |l PQun-
ning Windows NT 4.0, the RapidBase Servecépable of

Diagnostic Tool(ODT) will be based onRapidBase. The
operational measurement data of all the motors in a system
will be fed into theRapidBaseServer, in intervals ranging
from 100 ms tofew seconds.Various statebehavior
models will be implemented with triggers, and the
knowledgeabout the process causalityil be captured in
fuzzy rule sets. The main purpose of ODT isatlvise the
operatoraboutappropriate actions when malfunctions are
detected inthe system. The tool iplanned to be on the
market in year 2001.

8 Comparative review of related systems

It is difficult to compareRapidBasewith other systems
because ofits unusual set of functionality that is not
matched by anyother typical databasesystem. However,
there aresome overlappingareas offunctionality with
other systems. We will pick up three of them: (Ihain-
memory database, (2) the time series support andc{®k
capabilities. Below, we will review some prominent
commercialized implementations in the above areas.

8.1 Main-memory database

A few main-memornybasedmplementationshaveemerged
from research into the market. OneDataBlitz of Lucent
Technologies (knownbefore as Dali of Bell Labs
[Jag+94]). DataBlitaisessharedmemory forinterprocess
communications,and compile-time interfaces (C++ and
Ode) for databasaccess. Both result igood performance.
TimesTen by TimesTerPerformance Softwargbefore
known as SmallBase of HP LafidN96]) is a true SQL

9 Conclusions and future work

It turned out to be feasible to design and implemenora
traditional set ofdatabasdunctionality thatcan serve a
broad rangeindustrial applications thaprocessmeasure-
ment data. Although the majaharacteristics are in place,
still many morehave to be provided. In addition to im-
proving the raw data manipulation performance, other
directions,dictated byindustrial applicatiomeeds are also
attractive. One development path is to introduce meare
powerful reasoning mechanisms behind the active capabili-
ties, inaddition tothe fuzzy rule sets. Inorder to detect
complex process states in real time, a set of pate=oy-
nition methods could be consider (including methods
for recognition of temporal patterns). #eedfor adjunct
data mining capabilities for extracting infererame pattern
recognition models has alsamerged.With the growing
complexity of the active mechanisms, it is becoming
obvious that the explainabilitfeatures(why the system
took the givendecisions?)will be requestedmore and
more. They will be essential in maintaining ttanfidence

system characterized by a run-time SQL interpretation. Theof users in the technology. All of theaeeas are currently

PREPARE optimization isavailable and so aremain-
memoryaccess methodptimizations. ClustRa by Clus-
tRa AS (before byTelenor of Norway) is an example of
high-performance, hlgavailability system [Hva+95]. It
utilizes a network of computers to distribute thad and
to perform diskless transactidngging. All of the men-
tioned systems beat RapidBase in termmasi speed. They
also offer a full transactionalervicewhile, in RapidBase,
the unit of atomicity, isolatiorand durability is atmost
one RQL statement.

8.2 Time series support

As noted before, vendors of traditiortdtabaseystems do
not deliver the time series functionalitgquired byindus-
trial applications. In this area, the most visipl®duct on
the market is Industrial SQLServer Wonderware. The
supportedtime seriesmodel is separate fronthe SQL
model and is based on named dstaes. Some othegarod-
ucts include time series support foeasurement data, for
example Polyhedrgby Polyhedra)and RAPID Historian
(by Automsoft International). Theidatamodels are very
limited whencompared toRQL, andtime seriesdata are
difficult to access from a generalized data language.

8.3 Active capabilities

Common ECA triggergan be found inmany database
systemsnowadays, includinghe big brandsand some of

the ones mentioned iBec. 8.1.Howeverthe capabilities
are usually limited to what the SQL-%®andardspecifies.

RapidBaseggoesfurther in enrichinghe power of expres-

sion of trigger definitionsand providing an originalcon-

cept of fuzzytriggers. Also, triggers inRapidBase are
highly optimized and there are good chances ttaystand

up against any competition in terms of performance.

being studied at VTT Information Technology.

The latest, up-to-dateinformation on RapidBase is at:
http:/frapidbase.vtt.fi

References

[Bou+97] T. Bouaziz, J. Karvonen, A. Pesonen, and A.
Wolski, "Design and Implementation of
TEMPO Fuzzy Triggers'Rroc. Eighth Int!l
conference on Database and Expert Systems
Applications (DEXA’'97)Sept. 1-5, 1997,
Toulouse, France, pp. 91-100
(http:/iwww.vtt fi/tte/projects/industrialdb/publ
s/tempo-design.pdf)

T. Bouaziz and A. Wolski, "Applying Fuzzy
Events to Approximate Reasoning in Active
Databases'Rroc. Sixth IEEE Int'| Conference
on Fuzzy Systems (FUZZ-IEEE'93)ly 1-5,
1997, Barcelona, Catalonia, Spain, pp.
729-735

(http:/iwww.vtt fi/tte/projects/industrialdb/publ
s/f-event-triggers.pdf).

ISO/IEC 9075-3. Information processing sys-
tems - Database language SQL, Part 3: Call-
level interface. International standard, fourth
edition, 1995. Ref. No. ISO 9075-3 : 1995
E).

A. Datta, "Research Issues in Databases for
ARCS: Active Rapidly Changing Data Sys-
tems",SIGMOD Record23(3), September
1994, pp. 8-13.

W.Dreyer et al., "Research Perspectives for
Time Series Management SystenSCM

[BW97]

[CLI-95]

[Dat94]

[Dre94]

[GR92]

[Gra93]

[Hva+95]

[Jag+94]

[Jen92]

[JSS93

[Kiv+99]

[LN96]

[MCD89]

SIGMOD Record23(1), March 1994, pp. 10-
15.

J. Gray and A. Reuter, "Transaction Processing
Systems, Concepts and Techniques", Morgan
Kaufmann Publishers, 1992.

M.H. Graham, "How to Get Serializability for
Real-Time Transactions without having to pay
for it", Proc. Real-Time Systems Symposium
Raleigh-Durham, North Carolina, December
1993, pp. 56-65.

S.-0O. Hvasshovd, @. Torbjgrsen, S.E. Brats-
berg and P. Holander, "The ClustRa Telecomm
Database: High Availability, High Through-
put, and Real-Time Responsftoc. 21th In-
ternational Conference on VLDBgptember
11-15, 1995, Zurich, Switzerland, pp. 469-
477.

H.V. Jagadish et al, "Dali: a High Performance
Main Memory Storage ManagePyoc. 20th
International Conference on VLDBgptember
12-15, 1994, Santiago, Chilpp. 48-59.

C.S. Jensen et al., "A Glossary of Temporal
Database ConceptsACM SIGMOD Recd,
21(3), September 1992, pp. 35-43.

H. V. Jagadish, A. Silberschatz and S. Sudar-
san, "Recovering from Main-Memory Lapses",
Proc. 19th International Conference on VLDB,
August 24-27, 1993, Dublin, Irelandp. 391-
404.

J. Kiviniemi, A. Wolski, A. Pesonen and J.
Arminen, "Lazy Aggregates for Real-Time
OLAP", Proc. First International Conference
on Data Warehousing and Knowledge Discov-
ery (Dawak'99), Aug. 30 - Sep. 1, 1999, Flor-
ence, Italy. Lecture Notes in Computer Sci-
ence, Springer-Verlag, 1999
(http:/lwww.vtt.filtte/projects/industrialdb/publ
s/lazy-aggr.pdf)

S. Listgaten and M.-A. Neimat, "Modelling
Consts for a MM-DBMS"Proc. First Work-
shop on Real-Time Databases (RTDB'96)
March 7-8, Newport Beach, CA, USA, pp. 77-
83.

Dennis R. McCarthy and Umeshar Dayal "The
Architecture Of An Active Data Base Manage-

[Patosg]

[Roe99]

[Shi+93]

[Sno95]

[SQL-92]

[SQL-99]

WB9S]

[WC96]

[WKP96]

ment System"Proc. 1989 ACM SIGMOD
Conf. (Portland, Oregon, USA), pp. 215-224.

N.W. Paton (ed.), "Active Rules in Database
Systems", Monographs in Computer Science,
Springer-Verlag, 1998.

E.Roe, "A Wrapper Class for Dynamically
Linked Plug-Ins" C/C++ Users Journal 17(5),
May 1999, pp.27-41.

H. Shimakawa, H. Ohnishi, I. Mizunuma and
M. Tagetaki, "Acquisition and Service of Tem-
poral Data for Real-Time Plant Monitoring",
Proc. Real-Time Systems Symposium, Ral-
eigh-Durham, NC, U.S.A., Dec. 1-3, 1993.

R. Snodgrass (ed.), "The TSQL2 Temporal
Query Language”, Kluwer Academic Publish-
ers, 1995, 674 s.

ISO/IEC 9075. Information processing systems
- Database language SQL. International stan-
dard, third edition, 1992. Ref. No. ISO 9075 :
1992 (E).

ISO/IEC 9075-2. Information processing sys-
tems - Database language SQL, Part 2: Foun-
dation. International standard, fourth edition,
1999. Ref. No. ISO 9075-2 : 1999 (E).

A. Wolski and T. Bouaziz, "Fuzzy Triggers:
Incorporating Imprecise Reasoning into Active
Databases'Proc. 14th International Confer-
ence on Data Engineering (ICDE'9®eb. 23-
27, 1998, Orlando, Florida, pp. 108-155, also
at:
http://www.vtt.fi/tte/projects/industrialdb/publs
[f-triggers.pdf.

J.Widom and S. Ceri (eds.), "Active Database
Systems: Triggers and Rules For Advanced Da-
tabase Processing"”, Morgan Kaufmann, 1996.

A. Wolski, J. Karvonen and A. Puolakka, "The
RAPID Case Study: Requirements for and the
Design of a Fast-Response Database System",
Proc. First Workshop on Real-Time Databases
(RTDB'96) March 7-8, Newport Beach, CA,
USA, pp. 32-39, also at:
http://www.vtt.fi/tte/projects/industrialdb/publs
[/case.pdf.

