
Design of RapidBase—an Active Measurement Database System

Antoni Wolski Jorma Kuha Tapio Luukkanen Antti Pesonen

Technical Research Centre of Finland (VTT)
VTT Information Technology

P.O. Box 1201, FIN-02044 VTT, Finland
e-mail: first-name.lastname@vtt.fi

Abstract

In data-intensive industrial on-line applications utilizing
live process data, one faces an unusual set of database
requirements. The process measurement data need to be
acquired at great speed, organized in time series and made
available for time-based retrieval. Active capabilities and
functional extensibility are needed to implement a flexible
data-driven processing paradigm. An efficient transaction
logging and recovery mechanism is needed in order not to
impede the data acquisition flow. RapidBase is a system
that meets these requirements. It utilizes a main-memory
database, a unique temporal-relational data model for han-
dling time series, and an elaborate trigger subsystem. It is
implemented as a server program equipped with interfaces
of high power of expression.

1 Introduction

Although the requirement for data management is omni-
present in various advanced applications, the main-stream
notion of a database may be not a best choice in all cases.
Certain application classes require a special collection of
features not found in general-purpose database systems.
This paper presents the design of RapidBase — a database
system tuned to the needs of handling measurement data in
modern industrial applications.

In complex industrial installations, such as a paper
mill, a power station, a power grid or a telecomm net-
work, huge amounts of measurement data are generated and
need to be processed for the purposes of control room
processing and process monitoring. Here, we do not deal
with the needs of the process automation systems because
they are, typically, satisfied by dedicated equipment (like
PLCs—programmable logic controllers). On the other
hand, the needs for the process data management are obvi-
ous and the requirements are becoming more and more
demanding. For example, in a typical power generating
unit of a power station, the data acquisition rate require-
ment has grown, in few years, from a couple of thousands

of measurements per second to almost ten thousand meas-
urements per second. The data needs not only be collected
promptly, but also summarized and visualized for the
operators, within a tolerable time delay of 1—2 s. Such
applications—the so-called process management sys-
tems—require special process database systems, such as
the one described here.

We have studied the needs for process databases, and
the technologies thereof, since 1992, in various projects
sponsored by industry-led consortia. In retrospect, the flow
of ideas and requirements from industrial partners has been
indispensable in achieving the proper set of system func-
tionality. We presented a case study and a first prototype in
[WKP96]. Since then, we have introduced a new data
model and a more general data language, extended the ac-
tive capabilities and added new recovery and extendibility
features, all of which are discussed in the sequel.

In the research community, the notion of ARCS (Ac-
tive Rapidly Changing Data Systems) was introduced
[Dat94], but no significant implementations were reported
at that time. The support for time series (which is a central
concept in a process database) has received more attention
[Dre94], and several implementations are known but they
are mostly tuned to the needs of financial applications. The
same is true for time series extensions of commercial
database systems, like Informix Dynamic Server (the
DataBlade technology acquired from Illustra), Oracle8i and
IBM DB2 Universal Database. Very few generalized sys-
tems for handling industrial temporal data are known.
Some of them are reviewed in Section 8. In research, the
focus has been on concurrency control and real-time sched-
uling, as in [Shi+93, Gra93], rather than on ease of per-
forming temporal operations on data.

In our time series implementation we used some of the
results produced in the research on temporal databases,
including the time concept taxonomy and some of the syn-
tactical constructs of TSQL2 [Sno95].

The research on active databases [WC96, Pat98] also
inspired our work a lot. We introduced new types of data-

Proc. Internat. Database Engineering and Applications Symposium
(IDEAS 2000), September 18-20, 2000, Yokohama, Japan, IEEE
Computer Society Press, 2000.

base triggers to satisfy special needs of process manage-
ment.

The next section deals with architectural issues. In Sec-
tion 3, the RQL (RapidBase Query Language) is presented,
together with the related data model. In Section 4, the ac-
tive capabilities are explained, in Section 5 the extensibil-
ity features are revealed, and the recovery mechanisms are
summarized in Section 6. Section 7 contains implementa-
tion notes and performance figures. A comparative review
of some commercial implementations intended for the
same range of applications is given in Section 8.

2 Architecture

RapidBase is built according to a classic Client/Server
architecture where the Server runs in a single operating
system process and applications connect to it over TCP/IP
connections. In addition to being a typical Client applica-
tion, a process may register itself with the Server as an
Action Executor application, for performing trigger-in-
voked and user-written actions. In order to increase the
robustness of the system, a deliberate choice was made for
not allowing the applications to share the same address
space with the Server. Consequently, the Server is pro-
tected by the network interface layer scanning all the mes-
sages and detecting errors therein. When compared to
shared-memory-based solutions, the architecture introduces
a communications-induced overhead which, however, does
not turn out to be significant. It was easy for us to meet
(and exceed) the original performance requirements of 500
measurement update transactions per second on a regular
PC (Windows NT) platform and at least 1000 on a low-
cost UNIX platform.

The main application interface is a C++-based class li-
brary RAPI (RapidBase API) that is an object-oriented
incarnation of the standard SQL CLI (Call Level Interface)
[CLI-95]. ODBC and JDBC drivers are also available for
Windows and Java application development, respectively.
Also, Action Executor programming interfaces are avail-
able for C++ and Java. There is also a C++ interface for
developing RapidBase User-Defined Functions (UDFs).
UDFs are compiled into plug-in modules (dynamic link
libraries) that are run-time loadable into the Server. A
number of administrator's tools have been implemented as
Java applets.

A distinguishing feature of RapidBase is that its data-
base is totally main-memory-based. This allows for single-
digit millisecond response times. The database is backed
up on disk using an optimized transaction logging method
described in Section 6.

3 RQL Data Model

Originally, the idea of using SQL as a basis for our de-
sign, came from our industrial partners. They were con-
cerned about the issues of a learning curve and supply of
trained programmers. They felt an SQL-based system
would be easier to introduce to the engineers than, for ex-

ample, an object-oriented database. The decision can be
appreciated now when one sees how easy it is to fill a
spreadsheet with the measurement data, and how an ad-hoc
ODBC-based VisualBasic application is just a few mouse
clicks away.

A shortcoming of SQL from our point of view was the
lack of support for time series. So, we designed RQL—a
language based on SQL-92 [SQL-92], with extensions for
time series support. We proposed the first model in
[WKP96]. A new, improved model is presented in this
paper. It has the advantage that it folds into a relational
model in the absence of temporal data.

3.1 HISTORY column type

The time series support is encapsulated in a special RQL
column type called HISTORY. A value of type HISTORY
is a nested table of its own, as can be seen in Fig. 1 where
a base table with two history columns is shown. The gray
table seen in the foreground of Fig. 1 represents an SQL
view of the RQL table—it is a snapshot table comprising
the currently valid column values. This SQL view is called
a current view of the RQL table. In the same time, previ-
ous values of history columns are stored as time series and
are accessible through extended syntax. Thus, for a tempo-
ral RapidBase table, there always exists the SQL view and
the RQL view, and they may be used interchangeably. The
system maintains identity of rows, and the temporal in-
formation, by introducing implicit columns shown in
light gray, in Fig. 1. The OID (object identifier) columns
are used for automatically assigned row and subrow identi-
fiers. Each (history column) subrow (called a history re-
cord) carries also two timestamps (OTS and OTS_END)
used for denotation of the subrow's valid time. The user
need not to define the implicit columns, or supply values
for them.

VALID NOW

VALID
2000-02-13
14:02:01.000

base
column HISTORY

column

OID .OID
.OTS

.OTS_END

.OID
.OTS

.OTS_END

t

Fig. 1. An RQL table with two history
columns.

2

Assume the table in Fig. 1 represents a set of temperature
probes. The table can then be created with the following
definition statement:

CREATE TABLE tempr_probes (
 probe_id CHAR(8),
 name VARCHAR(80),
 type CHAR(10),
 measur_h HISTORY (
 tempr FLOAT,
 quality SMALLINT
) SIZE 10000,
 scale INT,
 state_h HISTORY (
 state CHAR(8)
) SIZE 1000
);

The logical structure of the table is different from a gener-
alized temporal data model like TSQL2 [Sno95] in that a
user may choose which columns are of a snapshot nature
(base columns) and which ones have temporal characteris-
tics (history columns). Another difference is the introduc-
tion of subcolumns. The justification for this is that, very
often, measurement data is acquired as value vectors that
needs to be treated as identifiable units in subsequent proc-
essing. Instances of history columns may have different
sizes (in terms of number or history records), but the
maximum size (user-defined or default) cannot be exceeded.

3.2 Temporal semantics

Although a history column resembles an ordinary table, it
maintains special semantics which can be summarized in
the following way:

• The size (cardinality) of a history is fixed (note the
SIZE clause in the example; if it is omitted, a default
size is used). When the history becomes full, the size
is maintained by replacing the oldest history record
with the latest one (the circular buffer principle). If
the old history data are not to be lost, active objects
called archivers may be defined and enabled in the da-
tabase, with the purpose of moving the outdated data
to some other medium. The absolute size limit may
seem a strong measure but it allows to control the da-
tabase size buildup accurately.

• The history records are ordered chronologically, based
on their valid time. The latest record belongs to the
current view of the database.

• All the subcolumns are accessed using the dot nota-
tion, e.g. " measur_h.ots, measur_h.tempr".

• History columns contain implicit timestamp subcol-
umns that can be accessed in queries:
.OTS: the beginning of the record's valid time (user
or system supplied); .OTS_END: the end of the re-
cord's valid time (derived).

RapidBase database is a valid-time temporal database
[Jen92]. Consequently, all temporal joins are also valid-
time joins. There is a notion of valid time associated with
each history record. A valid time of a history record is an
(absolute) time period for which the values in the history
record reflect the modeled reality. The user usually supplies
the value of the valid-time start point, in the form of the
measurement timestamp (the .OTS subcolumn). The sys-
tem automatically maintains the end point value which is
a time point just before (with the system time resolution
of 1 ms) the value of the timestamp of the chronologically
following record. The valid time of the latest history record
extends up to the current time, depicted as NOW in the
RQL parlance. The valid-time end point of a record is al-
ways accessible via the implicit subcolumn .OTS_END.
The values of this column are not stored—they are derived
from the database at run-time. If an .OTS value is not
supplied with the measurements, the system automatically
assigns .OTS the transaction time. Effectively, this leads
to automatic translation from transaction time [Jen92] to
valid time.

The most convenient way to specify temporal search
conditions is to use the VALID predicate. With the
VALID predicate, one can specify time points, intervals
and periods, to restrict the temporal query.

The RapidBase temporal table model folds into the
standard SQL table model, when standard SQL statements
are used. This results from the RQL convention that the
VALID predicate is always present (explicitly or implic-
itly) in a SELECT statement. If it is not explicitly speci-
fied, the default form is "VALID NOW". With, VALID
NOW, the table of Fig. 1 is reduced to the current view
table shown shaded in gray. For example, the standard
SQL query

SELECT probe_id, name
 FROM tempr_probes
 WHERE state_h.state = 'ON';

is restricted to the current view of the table because of the
default VALID predicate.

An absolute valid-time point may be specified in
RQL, as in

SELECT probe_id, name, state_h.state,
measur_h.tempr
 FROM tempr_probes
 WHERE VALID '1998-02-13 14:02:01.000';

In this case, the valid-time join is performed between the
two history columns (state_h and measur_h). In
multi-table joins, the valid-time join is conceptually per-
formed before applying other join conditions.

There are various ways to specify a valid-time interval
of your interest. In the following query, all the measure-
ments of the last minute are retrieved if their probe state
was 'ON':

SELECT ots, ots_end, probe_id, name,
measur_h.tempr

3

 FROM tempr_probes
 WHERE state_h.state = 'ON'
 AND VALID FROM NOW – INTERVAL '1' MINUTE;

It is also possible to "sample" the query result with a
given time resolution. If we are interested in retrieving the
measurement data in 10 s time steps for the latest hour, we
would say:

SELECT ots, probe_id, state_h.state,
measur_h.tempr
 FROM tempr_probes
 TIMEPOINT SERIES INTERVAL '10' SECOND
 WHERE VALID FROM NOW – INTERVAL '1' HOUR;

3.3 Result table format

All columns potentially available in a query accessing the
example table "tempr_probes" are shown in Fig. 2.

OTS

OTS_END

.OTS .OTS

.OTS_END.OTS_END

OID .OID .OID

Fig. 2. Implicit (light gray) and explicit
(dark gray) columns available in the
result table.

The column names OTS and OTS_END found in the two
last query examples are virtual columns of the result set.
They indicate the synthetic valid time of the result row.
The values of the columns are calculated from the OTS
values of the histories composing the temporal join. Fig.
2 depicts all the implicit and explicit columns of the
example table, potentially available in the query result set.

It was a deliberate choice to represent query results as
"flat" tables. Thanks to that, standard tools for result set
processing, such as ODBC and JDBC may be used. The re-
sult set can be sorted with the standard ORDER BY clause.

3.4 Data acquisition in RQL

Adding new data to measurement histories is done by
updating the current view rows. A standard SQL UPDATE
statement suffices, as in:

UPDATE tempr_probes
 SET measur_h.tempr = 134
 WHERE probe_id = 'TEMP34'

The result of executing the statement is the introduction of
a new (current) history record in the history. The previous
current record becomes (chronologically) the one preceding
the current one. It may be accessed by using a VALID
predicate with a correct time point value, but it is not
accessible any more with the standard SQL SELECT
statement.

In RQL, new statements were introduced for maintaining
existing histories. For example, the history records can be
changed with the UPDATE HISTORY statement and they
are removed with the DELETE FROM HISTORY state-
ment. Also, INSERT INTO HISTORY was considered (for
inserting history records "into the past"), but has not been
implemented yet.

4 RapidBase Triggers

The RapidBase trigger subsystem covers a broad range of
active database capabilities. RapidBase triggers are based
on the classic ECA (event-condition-action) model
[MCD89]. In their simplest form, they follow the trigger
definition syntax of the SQL-99 standard [SQL-99]. In
RapidBase, various extensions have been made to the basic
ECA trigger model. As most of them are described else-
where [WKP96, WB98] , only a summary is given below.

Multiple condition-action blocks
This simple syntax extension allows for more
expressive triggers. For a single event type, it is pos-
sible to define a control structure to invoke alterna-
tive actions (or action sets) depending on the evalua-
tion of the conditions. With the following trigger,
the two abnormal probe states are set (and reset to
NORMAL) when the measurement values exceed
given thresholds:

CREATE TRIGGER Setting_states UPDATE OF
measur_h ON tempr_probes
 WHEN OLD.measur_h.tempr <= 1000 AND
NEW.measur_h.tempr > 1000
 DO SET state_h.state = "OVERHEAT"
 WHEN OLD.measur_h.tempr >= 900 AND
 NEW.measur_h.tempr BETWEEN 0 AND 900
 DO SET state_h.state = "NORMAL"
 WHEN OLD.measur_h.tempr >= 0 AND
NEW.measur_h.tempr < 0
 DO SET state_h.state = "FREEZE"
 WHEN OLD.measur_h.tempr < 10 AND
 NEW.measur_h.tempr BETWEEN 10 AND
1000
 DO SET state_h.state = "NORMAL";

The SET statement is a simplified version of
UPDATE (it is just the SET clause). It is used for
changing values in the triggering row.

Built-in composite events
Instead of supporting a generalized composite event

4

language, a few pre-defined composite event types are
available. They are modeled after well-known
notions, like timers and counters. Timer and counter
triggers were presented in [WKP96]. An alarm state
column is assigned a new value, resulting from the
following timer trigger, when a probe value has been
over a given threshold for more than 10 minutes:

CREATE TRIGGER
Delayed_overheat
 TIMER ON tempr_probes
 SET INTERVAL '10' MINUTE
 START ON UPDATE (
measur_h.tempr > 1000)
 CLEAR ON UPDATE (
measur_h.tempr < 900)
 DO SET state_h.state =
"OVERHEAT";

The CLEAR clause nullifies the timer when a sepa-
rate condition is satisfied.

Fuzzy triggers
The power of fuzzy inference is utilized in fuzzy trig-
gers [WB98, Bou+97]. In C-fuzzy (condition-fuzzy)
triggers, fuzzy rule sets may be used in the condition
evaluation. In CA-fuzzy (condition-action-fuzzy)
triggers, the action part contains a fuzzy inference
block which is evaluated to select a concrete action.
Implementation of fuzzy events [BW97] was consid-
ered but has not been carried out.

Trigger variables
Trigger-scoped variables allow passing results of
arbitrary queries to other components of a trigger.
Set-oriented variables (collections) may be also
fuzzy-quantified using quantifiers like "few", "most",
etc. Values for collections are supplied with
SELECT statements as in:

...
 VAR COLLECTION temperatures =
 (SELECT measur_h.tempr FROM tempr_probes)
...

Internal actions
Internal actions comprise of RQL statements and
user-defined procedures, and they are run in the same
isolation unit (transaction) as the triggering state-
ment. They are executed in the deferred mode (at the
end of the transaction). User-defined procedures
(UDFs) are called with the EXEC statement, like the
following one calculating a one-minute average of a
history subcolumn and storing the result into another
column:

...
DO EXEC average_1min('measur_h.tempr',
'aggr_h.value')

...

External actions
External actions are asynchronous invocations of pro-
cedures in external programs. They run in a detached
mode, i.e. outside of the triggering transactions. The
intended use of external actions is mostly data and
event dissemination to autonomous applications.
External actions represent a true "push" paradigm,
whereby the Server invokes (in a general case) a mul-
ticast transmission to Clients. The CALL statement
is used to invoke external actions, like in

...
DO CALL ProbeControl.Over_heat(h.temp)
...

whereby the Over_heat method is invoked at the
Action Executor process called ProbeControl.

5 User Defined Functions

The RapidBase Server can be functionally extended at run-
time with User Defined Functions (UDFs) which are user-
written C++ methods contained within dynamic link
libraries. UDFs can be used in two ways: as functions
(which return a value) in RQL expressions, and as proce-
dures (which do not return a value) in internal trigger
actions. Both types can also be directly invoked by Cli-
ents. Functions and procedures can be written to accept any
(even variable) number of parameters of any RQL type. In
the following sample of an RQL script, a UDF named
"smallest" is defined in the database, used in an expression
and, finally, dropped:

CREATE OR REPLACE FUNCTION smallest
 EXTERNAL NAME 'Smallest'
 IN 'demodll.dll';

UPDATE foobar
 SET field1 = smallest(field2, field3,
 3.14159)
 WHERE foo_id = 101;

DROP FUNCTION smallest;

The RQL syntax for accessing the external functions (e.g.
registering them to the Server, executing and dropping
them) follows the example of existing commercial prod-
ucts and the SQL-99 standard. However, while the com-
mercial implementations typically define a C language
interface between the Server and the DLL, RapidBase im-
plements a class-based C++ interface. A common header
file defines the CallContext class which contains methods
the UDF implementation uses for retrieving its parameters
and their types, for passing results back to the Server, and
for accessing other Server functionality.

The implementation allows for rebinding (reloading)
the functions "on-the-fly" even if they are specified in the

5

action part of a trigger (or some other pre-compiled state-
ment).

Multiple operating systems (Windows NT, Linux,
HP/UX) are supported through encapsulation of OS-
dependent parts. The multi-platform support for UDF's
was inspired by [Roe99].

6 Recovery with adjustable durability

The automatic recovery mechanism uses checkpoint files
and a redo-log [GR92]. No undo log is needed because a
shadow-based update method is used (a working copy of a
row is created for the time of processing the transaction).
The policy of redo logging is tunable to durability
requirements. The usual WAL (write-ahead-log) policy is
available by way of the standard SQL statement COMMIT
WORK. This guarantees full durability but it compro-
mises the response time. For the sake of rapidly changing
data, a more efficient asynchronous policy (inspired by
[JSS93]) was introduced, too. The statement COMMIT
LOGGER results in the asynchronous flushing of the
memory-resident transaction log to disk. Even more
relaxed logging is available. If no COMMIT statements
are used, the log is flushed to disk periodically, following
a default (e.g. 5 s) or a specified time interval. Both the
logging and automatic checkpointing may be also totally
disabled.

The relaxed logging policies are meant to be used with
measurement data streams of high density. This may result
in loosing of a value or two, in a crash, but the loss need
not be significant from the temporal consistency point of
view.

7 Implementation, performance and utiliza-
tion

The central part of the software, the RapidBase Server is
written in C++ in a platform-independent way. Currently,
versions for Windows NT, HP-UX and Linux are avail-
able. A subsystem initialization framework, that is acti-
vated upon startup, has made it possible to decompose the
system into compile-time configurable modules (subsys-
tems). For example, the fuzzy trigger subsystem may be
included or not, in the final executable build. The solution
includes also the configuration of RQL syntax, so that the
legal RQL syntax always corresponds to the functionality
of a given configuration. In addition to compile-time con-
figurability, the Server's functionality may be controlled
by way of startup parameters, dynamic control commands
and user-defined functions and procedures.

Because no composite benchmark exists for the type of
applications RapidBase is intended for, we present only
some selective performance figures here, essentially related
to executing UPDATE statements on histories.

On a reference platform of 200 MHz Pentium II PC run-
ning Windows NT 4.0, the RapidBase Server is capable of

accepting up to 1000 UPDATE transactions per second.
Simple SELECT statements are executed within single
millisecond response time range. The above figures were
obtained in the operational mode whereby each RQL
statement was fully run-time interpreted by the Server.
Performance improvements are expected when the so-called
PREPARE processing (i.e. statement precompilation) will
be implemented in the near future. Additionally, the
practical data acquisition performance may be dramatically
improved by using user-defined procedures (UDFs) for that
purpose. In a recent test, a throughput of 6 000 pre-com-
piled UPDATE statements per second was attained from
within a UDF.

An execution time of a typical trigger with internal
actions is within 0.1 ms. For example, this results in the
update rate of 900 updates per second if each update fires a
trigger. The achieved performance of triggers stems from
the fact that triggers are pre-compiled, including the condi-
tion and action parts. The same principle applies to fuzzy
triggers. The execution time of a fuzzy trigger with at
most 32 fuzzy rules is within 0.5 ms and scales linearly
with the number of rules (for more on fuzzy trigger per-
formance, see [Bou+97]). The stress on trigger perform-
ance reflects the idea that the primary responsibility of
RapidBase is intended to be active monitoring of industrial
processes.

Performance of RapidBase was demonstrated in the
implementation of the Rubic Real-time OLAP Engine
[Kiv+99] where a load of hundreds of update transactions
and thousands of trigger executions per second was sus-
tained on the reference platform.

RapidBase is currently being used in several pilot imple-
mentations in Finland and, recently, also in France. The
applications are, among others, a telecomm protocol ana-
lyzer, traffic monitoring in a telephone switch, hydro-elec-
tric power station simulator, and a web breakage sensitiv-
ity indicator in a paper machine.

The most notable commercialization effort is emerging
from the cooperation with ABB Industry, a leading sup-
plier of industrial high-power drive systems. A typical
application involves a drive system of a paper machine. It
comprises of up to one hundred (mostly AC) electric mo-
tors together with the related frequency inverter equipment,
automatic control and a diagnostic system. The new gen-
eration of ABB's drive diagnostic system called Operator's
Diagnostic Tool (ODT) will be based on RapidBase. The
operational measurement data of all the motors in a system
will be fed into the RapidBase Server, in intervals ranging
from 100 ms to few seconds. Various state behavior
models will be implemented with triggers, and the
knowledge about the process causality will be captured in
fuzzy rule sets. The main purpose of ODT is to advise the
operator about appropriate actions when malfunctions are
detected in the system. The tool is planned to be on the
market in year 2001.

6

8 Comparative review of related systems

It is difficult to compare RapidBase with other systems
because of its unusual set of functionality that is not
matched by any other typical database system. However,
there are some overlapping areas of functionality with
other systems. We will pick up three of them: (1) a main-
memory database, (2) the time series support and (3) active
capabilities. Below, we will review some prominent
commercialized implementations in the above areas.

8.1 Main-memory database

A few main-memory based implementations have emerged
from research into the market. One is DataBlitz of Lucent
Technologies (known before as Dalí of Bell Labs
[Jag+94]). DataBlitz uses shared memory for interprocess
communications, and compile-time interfaces (C++ and
Ode) for database access. Both result in good performance.
TimesTen by TimesTen Performance Software (before
known as SmallBase of HP Labs [LN96]) is a true SQL
system characterized by a run-time SQL interpretation. The
PREPARE optimization is available and so are main-
memory access method optimizations. ClustRa by Clus-
tRa AS (before by Telenor of Norway) is an example of
high-performance, high-availability system [Hva+95]. It
utilizes a network of computers to distribute the load and
to perform diskless transaction logging. All of the men-
tioned systems beat RapidBase in term of raw speed. They
also offer a full transactional service while, in RapidBase,
the unit of atomicity, isolation and durability is at most
one RQL statement.

8.2 Time series support

As noted before, vendors of traditional database systems do
not deliver the time series functionality required by indus-
trial applications. In this area, the most visible product on
the market is Industrial SQLServer by Wonderware. The
supported time series model is separate from the SQL
model and is based on named data series. Some other prod-
ucts include time series support for measurement data, for
example Polyhedra (by Polyhedra) and RAPID Historian
(by Automsoft International). Their data models are very
limited when compared to RQL, and time series data are
difficult to access from a generalized data language.

8.3 Active capabilities

Common ECA triggers can be found in many database
systems nowadays, including the big brands and some of
the ones mentioned in Sec. 8.1. However the capabilities
are usually limited to what the SQL-99 standard specifies.
RapidBase goes further in enriching the power of expres-
sion of trigger definitions and providing an original con-
cept of fuzzy triggers. Also, triggers in RapidBase are
highly optimized and there are good chances they can stand
up against any competition in terms of performance.

9 Conclusions and future work

It turned out to be feasible to design and implement a non-
traditional set of database functionality that can serve a
broad range industrial applications that process measure-
ment data. Although the major characteristics are in place,
still many more have to be provided. In addition to im-
proving the raw data manipulation performance, other
directions, dictated by industrial application needs are also
attractive. One development path is to introduce new, more
powerful reasoning mechanisms behind the active capabili-
ties, in addition to the fuzzy rule sets. In order to detect
complex process states in real time, a set of pattern recog-
nition methods could be considered too (including methods
for recognition of temporal patterns). A need for adjunct
data mining capabilities for extracting inference and pattern
recognition models has also emerged. With the growing
complexity of the active mechanisms, it is becoming
obvious that the explainability features (why the system
took the given decisions?) will be requested more and
more. They will be essential in maintaining the confidence
of users in the technology. All of these areas are currently
being studied at VTT Information Technology.

The latest, up-to-date information on RapidBase is at:
http://rapidbase.vtt.fi .

References
[Bou+97] T. Bouaziz, J. Karvonen, A. Pesonen, and A.

Wolski, "Design and Implementation of
TEMPO Fuzzy Triggers", Proc. Eighth Int’l
conference on Database and Expert Systems
Applications (DEXA’97), Sept. 1-5, 1997,
Toulouse, France, pp. 91–100
(http://www.vtt.fi/tte/projects/industrialdb/publ
s/tempo-design.pdf)

[BW97] T. Bouaziz and A. Wolski, "Applying Fuzzy
Events to Approximate Reasoning in Active
Databases", Proc. Sixth IEEE Int'l Conference
on Fuzzy Systems (FUZZ-IEEE’97), July 1-5,
1997, Barcelona, Catalonia, Spain, pp.
729–735
(http://www.vtt.fi/tte/projects/industrialdb/publ
s/f-event-triggers.pdf).

[CLI-95] ISO/IEC 9075-3. Information processing sys-
tems - Database language SQL, Part 3: Call-
level interface. International standard, fourth
edition, 1995. Ref. No. ISO 9075-3 : 1995
(E).

[Dat94] A. Datta, "Research Issues in Databases for
ARCS: Active Rapidly Changing Data Sys-
tems", SIGMOD Record, 23(3), September
1994, pp. 8–13.

[Dre94] W. Dreyer et al., "Research Perspectives for
Time Series Management Systems", ACM

7

SIGMOD Record, 23(1), March 1994, pp. 10-
15.

[GR92] J. Gray and A. Reuter, "Transaction Processing
Systems, Concepts and Techniques", Morgan
Kaufmann Publishers, 1992.

[Gra93] M.H. Graham, "How to Get Serializability for
Real-Time Transactions without having to pay
for it", Proc. Real-Time Systems Symposium,
Raleigh-Durham, North Carolina, December
1993, pp. 56-65.

[Hva+95] S.-O. Hvasshovd, Ø. Torbjørsen, S.E. Brats-
berg and P. Holander, "The ClustRa Telecomm
Database: High Availability, High Through-
put, and Real-Time Response", Proc. 21th In-
ternational Conference on VLDB, September
11-15, 1995, Zurich, Switzerland, pp. 469-
477.

[Jag+94] H.V. Jagadish et al, "Dalí: a High Performance
Main Memory Storage Manager", Proc. 20th
International Conference on VLDB, September
12-15, 1994, Santiago, Chile, pp. 48-59.

[Jen92] C.S. Jensen et al., "A Glossary of Temporal
Database Concepts", ACM SIGMOD Record,
21(3), September 1992, pp. 35-43.

[JSS93] H. V. Jagadish, A. Silberschatz and S. Sudar-
san, "Recovering from Main-Memory Lapses",
Proc. 19th International Conference on VLDB,
August 24-27, 1993, Dublin, Ireland, pp. 391-
404.

[Kiv+99] J. Kiviniemi, A. Wolski, A. Pesonen and J.
Arminen, "Lazy Aggregates for Real-Time
OLAP", Proc. First International Conference
on Data Warehousing and Knowledge Discov-
ery (DaWak'99), Aug. 30 - Sep. 1, 1999, Flor-
ence, Italy. Lecture Notes in Computer Sci-
ence, Springer-Verlag, 1999
(http://www.vtt.fi/tte/projects/industrialdb/publ
s/lazy-aggr.pdf)

[LN96] S. Listgarten and M.-A. Neimat, "Modelling
Consts for a MM-DBMS", Proc. First Work-
shop on Real-Time Databases (RTDB'96),
March 7-8, Newport Beach, CA, USA, pp. 77-
83.

[MCD89] Dennis R. McCarthy and Umeshar Dayal "The
Architecture Of An Active Data Base Manage-

ment System", Proc. 1989 ACM SIGMOD
Conf. (Portland, Oregon, USA), pp. 215-224.

[Pat98] N.W. Paton (ed.), "Active Rules in Database
Systems", Monographs in Computer Science,
Springer-Verlag, 1998.

[Roe99] E. Roe, "A Wrapper Class for Dynamically
Linked Plug-Ins", C/C++ Users Journal, 17(5),
May 1999, pp.27-41.

[Shi+93] H. Shimakawa, H. Ohnishi, I. Mizunuma and
M. Tagetaki, "Acquisition and Service of Tem-
poral Data for Real-Time Plant Monitoring",
Proc. Real-Time Systems Symposium, Ral-
eigh-Durham, NC, U.S.A., Dec. 1-3, 1993.

[Sno95] R. Snodgrass (ed.), "The TSQL2 Temporal
Query Language", Kluwer Academic Publish-
ers, 1995, 674 s.

[SQL-92] ISO/IEC 9075. Information processing systems
- Database language SQL. International stan-
dard, third edition, 1992. Ref. No. ISO 9075 :
1992 (E).

[SQL-99] ISO/IEC 9075-2. Information processing sys-
tems - Database language SQL, Part 2: Foun-
dation. International standard, fourth edition,
1999. Ref. No. ISO 9075-2 : 1999 (E).

[WB98] A. Wolski and T. Bouaziz, "Fuzzy Triggers:
Incorporating Imprecise Reasoning into Active
Databases", Proc. 14th International Confer-
ence on Data Engineering (ICDE'98), Feb. 23-
27, 1998, Orlando, Florida, pp. 108-155, also
at:
http://www.vtt.fi/tte/projects/industrialdb/publs
/f-triggers.pdf.

[WC96] J. Widom and S. Ceri (eds.), "Active Database
Systems: Triggers and Rules For Advanced Da-
tabase Processing", Morgan Kaufmann, 1996.

[WKP96] A. Wolski, J. Karvonen and A. Puolakka, "The
RAPID Case Study: Requirements for and the
Design of a Fast-Response Database System",
Proc. First Workshop on Real-Time Databases
(RTDB'96), March 7-8, Newport Beach, CA,
USA, pp. 32–39, also at:
http://www.vtt.fi/tte/projects/industrialdb/publs
/case.pdf.

8

