
© Copyright IBM Corporation 2010 Trademarks
solidDB and the secrets of speed Page 1 of 4

solidDB and the secrets of speed
How the IBM in-memory database redefines high performance

Antoni Wolski
Sally Hartnell

22 January 2010

A look at the technical secrets inside IBM solidDB

A relational in-memory database, IBM solidDB is used worldwide for its ability to deliver extreme
speed and extreme availability. As the name implies, an in-memory database resides entirely in
main memory rather than on disk, making data access an order of magnitude faster than with
conventional, disk-based databases. Part of that leap is due to the fact that RAM simply provides
faster data access than hard disk drives.

But solidDB also has data structures and access methods specifically designed for storing,
searching, and processing data in main memory. As a result, it outperforms ordinary disk-based
databases even when the latter have data fully cached in memory. Some databases deliver low
latency but cannot handle large numbers of transactions or concurrent sessions. IBM solidDB
provides throughput measured in the range of tens-to-hundreds of thousands of transactions per
second while consistently achieving response times (or latency) measured in microseconds. This
article explores the structural differences between in-memory and disk-based databases, and how
solidDB works to deliver extreme speed.

Some RDBMS history
When the first data management systems emerged in the 1960s, disk drives were the only place to
store and access large amounts of data in a reasonable time. RDBMS designers concentrated on
optimizing I/O and tried to align the data access patterns with the block structure imposed by the
drives. Design strategy frequently centered on a shared buffer pool where data blocks were kept
for reuse, while advances in access methods produced solutions like the renowned B+ tree, which
is a block-optimized index.

Meanwhile, query optimization tactics focused on minimizing page fetches wherever possible.
In the fierce battle for performance, disk I/O was often the deadliest enemy, and processing
efficiency was sacrificed to avoid disk access. For example, with typical page sizes of 8 KB or 16
KB, in-page processing is inherently sequential and less CPU-efficient than random data access.
Nevertheless, it remains a popular way to reduce disk access.

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/


developerWorks® ibm.com/developerWorks/

solidDB and the secrets of speed Page 2 of 4

When the era of abundant memory arrived, many DBAs increased their buffer pools until they were
large enough to contain an entire database-thus creating the concept of a fully cached database.
But within the RAM buffer pools, the DBMSs were still hostage to all the structural inefficiencies of
the block-oriented I/O strategy that had been created to deal with hard disk drives.

Moving past the blocks

One of the most noticeable differences of an in-memory database system is the absence of large
data block structures. IBM solidDB eliminates them. Table rows and index nodes are stored
independently in memory, so that data can be added without reorganizing big block structures. In-
memory databases also forgo the use of large-block indexes, sometimes called bushy trees, in
favor of slim structures where the number of index levels is increased and the index node size is
kept to a minimum to avoid costly in-node processing. The most common in-memory database
index strategy is called T-tree. IBM solidDB instead uses an index called trie (or prefix tree), which
was originally created for text searching but turns out to be perfect for in-memory indexing. A trie
(the name comes from the word retrieval) is made up of a series of nodes where the descendants
of a given node have the same prefix of the string associated with that node. For example, if the
word "dog" were stored in a trie as a node, it would descend from the node containing "do," which
would descend from the node containing "d."

Trie indexes increase performance by reducing the need for key value comparisons and practically
eliminating innode processing. The index contains a node that is a small array of pointers to the
lower level. Instead of using the whole key value to walk the tree by way of comparisons, the key
value is cut into small chunks of a few bits. Each chunk is a direct index to the pointer array of the
corresponding level: the first left-hand-side chunk to the first-level nodes, the second chunk to the
nodes of the second level, and so on. Thus, the entire search can be performed with just a few
array element retrievals. Also, each index node is a small data block (approximately 256 bytes
in solidDB), which is beneficial because the blocks fit precisely into modern processor caches,
increasing processing efficiency by promoting efficient cache use. Small data arrays like these
are the most efficient data structure in modern processors, and solidDB uses them frequently to
maximize performance.

Checkpoints and durability: Paths to speed

IBM solidDB uses several additional techniques to accelerate database processing, starting with a
patented checkpointing method that produces a snapshot-consistent checkpoint without blocking
normal transaction processing. A snapshotconsistent checkpoint allows the database to restart
from a checkpoint only. Other database products do not normally allow that-the transaction log files
must be used to recalculate the consistent state (solidDB allows transaction logging to be turned
off, if desired). The solidDB solution is made possible by the ability to allocate row images and row
shadow images (different versions of the same row) without using inefficient block structures. Only
those images that correspond to a consistent snapshot are written to the checkpoint file, and the
row shadows allow the currently executing transactions to run unrestricted during checkpointing.



ibm.com/developerWorks/ developerWorks®

solidDB and the secrets of speed Page 3 of 4

Further, the solidDB query optimizer recognizes the different nature of the in-memory tables by
estimating execution costs in a new way. Query optimization focuses on CPUbound execution
paths, while a fully cached database will still be preoccupied with optimizing page fetches to mass
storage that are no longer an issue.

Another technique IBM solidDB uses is the relaxation of transaction durability. In the past,
databases always supported full durability, guaranteeing that the written data is made persistent
the moment the transaction is committed. The problem is that full durability inflicts synchronous log
writes, and thus it consumes resources and reduces response times. In many situations, accepting
less durability for some tasks for the sake of faster response times is a perfectly acceptable trade-
off. With solidDB, transaction durability can be relaxed at run time for a given database session or
even for a single transaction.

IBM solidDB also increases database performance by helping developers avoid process context
switches in client/ server interactions. By using a database access driver provided with solidDB
that contains the full query execution code, a developer can effectively link the application with the
DBMS code and use shared memory to share the data among the applications.

When all of these measures are applied and the application load is of a type that would inflict
significant I/O in a traditional database, the increased throughput using solidDB can be an order
of magnitude higher. Further, response time improvements are even more dramatic: latencies for
query transactions are usually 10 to 20 microseconds and latencies for update transactions are
generally less than 100 microseconds. In a traditional disk-based database, the corresponding
times are typically measured in milliseconds.

solidDB speed and power
Beyond these performance advantages, solidDB also provides several additional benefits. It
combines a fully transactional in-memory database and a powerful, disk-based database into a
single, compact solution with the ability to transparently host part of the same database in memory
and part on disk. And IBM solidDB is the only product on the market that can be deployed as a



developerWorks® ibm.com/developerWorks/

solidDB and the secrets of speed Page 4 of 4

high-speed cache in front of almost any other relational, disk-based database (see Figure 1).
Finally, solidDB delivers extreme availability, going beyond the typical five nines to 99.9999 percent
uptime. In other words-if you're looking for extreme speed, you'll find it, but that's just the beginning
for IBM solidDB.

© Copyright IBM Corporation 2010
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Some RDBMS history
	Moving past the blocks
	Checkpoints and durability: Paths to speed
	solidDB speed and power
	Trademarks

