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Abstract

A method for integrated concurrency control and recovery, applicable to hetero-
geneous multidatabase systems is proposed1. The role of the participant in the
two-phase commit protocol is laid on an entity called 2PC Agent associated with
the local database system. The main importance of the method is in preserving
global serializability in the presence of unilateral aborts and site failures. The
method requires the participating database systems to use the strict two-phase
locking or a comparable rigorous concurrency control policy.

Introduction

There has recently been much interest in integrating pre-existing databases managed by hetero-
geneous database management systems (DBMS). This is understood to be caused by the need
to eliminate "islands of information" [11] and, generally, the necessity to improve the interoper-
ability of database systems [23]. There are various architectures supporting these objectives.
The multidatabase architecture [25] is characterized by preserving various aspects of local
system autonomy [31, 13] to a great extent. The database systems  retain their design autonomy,
i.e. neither their functional characteristics and the existing interfaces can be modified, nor the
database structures changed. In addition, they have execution autonomy which is reflected by
their freedom to execute a database operation in any locally suitable order or to abort an
operation. The federated database architecture [19] represents an interoperability approach
based on a global framework for schema information exchange.

In order to fully utilize integrated databases, facilities to support transactions spanning distinct
databases are needed. The autonomy properties of the systems make them incapable of partici-
pating in conventional global concurrency control as well as commit and recovery procedures
required to attain the full quality of transaction processing. We propose a method for integrated
concurrency control and recovery, applicable to a heterogeneous multidatabase system. Such a
system includes ready-made database management systems (called Participating DBMSs here)

1 This paper is an enhanced version of the original PARBASE-90 publication. The main changes are the introduction
of the two-step subtransaction certification  and the inclusion of the certification algorithm descriptions. The sketch
of the proof has been updated accordingly.
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located, essentially, at distinct computing nodes (Participating Sites). The Participating
DBMSs are heterogeneous with respect to local DBMS software.

Traditionally, the concept of a correctness of transactions in heterogeneous databases [16] has
been based on recoverable and serializable  transaction executions [3]. Other transaction mod-
els were also proposed [2, 14, 22, 28], with the emphasis on compensation based recovery
which was extensively studied,e.g. in [32].  We shall  focus our attention on serializability-pre-
serving concurrency control and recovery methods in the sequel.

Most of the latest research work  in the area has concentrated on the concurrency control issues
limited to failure-free operation. The example methods are the site graph method [4], the altru-
istic locking [29], the cycle detection method of [30], the optimistic algorithm of [11], the inte-
gration method using observability and controllability [21], the superdatabases [27], the top-
down approach of [10], the value date method [24] and the ticket methods [15]. Problems with
allowing local transactions have also led to a new correctness criterion, the quasi serializabil-
ity, which is a weaker notion than conflict serializability [8]. Local transactions are transactions
executing within the scope of a Participating DBMS, and they are not available for analysis by
any entity outside the Participating DBMS.

The common assumption made in the above studies is that the local concurrency control mech-
anism of a participating local database system is unknown. This leads to approaches which are
characterized by serious limitations imposed on the concurrency of global transactions. Also,
the above methods typically require a centralized global transaction manager, and some of them
require modifications to participating database management systems. For a comparison of some
of the methods, see [9, 7].

A notable progress in dealing with failures is represented by the commit graph method of [6].
Under certain restrictions the method guarantees the conflict serializability of global and local
transactions, and the deadlock detection. Typical failures are taken care of. The local transac-
tion managers need not be modified. The method is based on a centralized transaction man-
agement facility utilizing a pessimistic and highly restrictive concurrency control policy.

In this work, we set up a set of similar goals reflecting a practical point of view. We assume the
participating DBMSs retain their design autonomy and the execution autonomy with respect to
global requests, which is reflected, among others, by their freedom to unilaterally abort an
operation at any time. Thus, the recovery from such failures must be included in the method.
We also allow for submission of local transactions through the existing local interface although
we shall have to restrict them considerably.

The significance of our approach is in that we consider centralized concurrency control solu-
tions impractical, and we intend to take advantage of decentralized dynamic concurrency con-
trol policies (e.g. locking) which lead to higher concurrency rates than centralized methods [1].

We assume the objective of the transaction management system is to preserve the traditional
characteristics of a transaction (so-called ACID): atomicity, consistency, isolation and durabil-
ity [18]. The view serializability [3] is assumed as a sufficient consistency criterion.

Typically, in distributed database systems, the ACID properties are attained by means of the
basic two-phase commit protocol (2PC) [17] or its variations [26], and the related recovery pro-
tocols. In the basic 2PC scheme, a Coordinator responsible for the global transaction commit-
ment communicates with Participants executing the subtransactions. It is typical of the scheme
that every Participant has to move a subtransaction to a recoverable prepared state before the
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global transaction is finally committed. In this state, the Participant does not have the execution
autonomy — it is obliged by the protocol to execute the final decision command (Commit or
Abort) issued by the Coordinator.

Systems supporting the prepared state are called here two-phased DBMSs, whereas systems
without an appropriate 2PC interface will be called single-phased DBMSs. It is evident that if
arbitrary single-phased DBMSs are used as Participating DBMSs and, additionally, submission
of local transactions is allowed, then the objective to guarantee ACID properties cannot be met
in general. The fact that most of the existing systems are single-phased, and thus neither sup-
port the prepared state nor have an external interface for participating in the 2PC protocol,  is a
major obstacle in the way of heterogeneous DBMS integration.

Therefore, our approach is based on the important restricting assumption that the Participating
DBMSs are capable of producing histories of the type produced by strict two-phase locking [3]
schedulers. The assumption is derived from the observation that most of the commercially
available systems use the strict two-phase locking (S2PL) [12] policy. Since this approach is the
prevailing one, the design autonomy of the Participating DBMS is not too much reduced by
this requirement in practice, while opening up practical possibilities to achieve the ACID prop-
erties.

As concerns the applicability of strict 2PL to distributed databases, it has been shown that, in
the absence of failures, a global transaction scheduler using the distributed two-phase locking
protocol produces serializable histories for global transactions [3]. It has also been proved that
this is true for a mix of global and local transactions [5]. We shall use the above result as the
basis of normal operation, i.e. in absence of failures. In the following, we shall concentrate on
achieving atomic transaction commitment and also recovery from the two most common types
of failures, i.e. the Participating Site system failure and the unilateral subtransaction abort by a
Participating DBMS.

The resulting 2PC Agent Method for integrating single-phased participating DBMSs into the
2PC scheme is presented below. The assumed architecture and requirements are described in
the next section. A short outline of the method follows. Then, a simplified proof of correctness
is presented. At the end, the remaining problems are discussed. A note on the prototype imple-
mentation of the method is included too.

Assumptions and requirements

Overall architecture

The architecture model of a multidatabase transaction management system we are proposing is
shown in Fig. 1. It is built of software modules (boxes) and interfaces (horizontal segments).
An interface is described in terms of commands which facilitate data exchange and control flow
between the interconnected modules. The interaction through an interface consists of issuing a
command and the subsequent response returned in the opposite direction. All the interfaces of
the model are synchronous, i.e. a command belonging to a given transaction can not be started
before the processing of the previous command of the sam e tr an sactio n  has been completed
at the interface.

By an operation we mean the execution of a command. An operation is said to be performed
after the result or confirmation is received through the interface in question. The modules are
multithreaded in the sense that operations belonging to different transactions may be processed
in parallel.
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A (multidatabase) global transaction is understood as a finite series of database operations (in
practical sense, e.g. executions of SQL commands) each of which originates within the applica-
tion execution and provides return values to the application at the Global Interface (GI). A
global subtransaction is a series of all the operations of a global transaction, performed at the
2PC interface of a particular site. Thus, similarly to transaction models used elsewhere [16, 5,
11, 9], for every global transaction there is at most one global subtransaction per site. A local
subtransaction is a series of operations pertaining to a global subtransaction, performed at the
local DBMS interface. The distinction between the global and local subtransactions is essential
in achieving the ability to deal with transaction failures afflicted by the Participating DBMS, as
will be shown in the sequel.

The  commands of a transaction are not known a priori to the system when the transaction is
started. In particular, the invocation and parameters of some commands may depend on the
results of other operations.
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Fig. 1. Proposed architecture of a multidatabase transaction management system.

The assumptions about GI are as follows:

(GI.1) The interface supports high level database manipulation command (e.g. SQL
DML: Select, Update, Insert and Delete ) that are transformable (by each under-
laying DBMS) to a sequence of Read and Write commands performed on elemen-
tary database objects;

(GI.2) Each database manipulation operation is explicitly related to a given Participating
DBMS;

(GI.3) The interface supports transaction management commands Begintransaction,
Commit and Abort.
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The Coordinator decomposes global transactions into global subtransactions, submits the corre-
sponding commands to the Participating Sites and returns the results to the application. Upon
receiving the global Commit, it starts the distributed commitment procedure according to the
basic 2PC protocol [17]. The Participant role is played by the 2PC Agent (2PCA) modules.
There is a single instance of the 2PCA associated with a Participating DBMS. The connecting
lines in Fig. 1 denote potential associations between the modules.

The functionality of the 2PC Agent interface is defined by the 2PC protocol. In particular, the
Prepare command (PREPARE message) is a request to move the subtransaction to the prepared
state. The response may either be affirmative (READY message) or negative (REFUSE mes-
sage). The decision commands Commit or Abort (COMMIT or ABORT message) have to be
accepted and acknowledged unconditionally.

The Local Transaction Manager (LTM) modules, represent the transactional aspects of the
Participating DBMSs. There is a single LTM (and the corresponding 2PCA) per site. In fact,
the concept of a site may be generalized into that of a computing environment associated with a
given LTM.

There is an important premise that the LTMs are pre-existing systems and their design auton-
omy is maximally preserved.

A global transaction results in one or more local subtransactions seen at LI. In a failure-free
operation there is only one local subtransaction per global transaction. Local transactions
(which are not seen by the 2PCA) also enter the LTM at LI. The LTM can not differentiate
between the local transactions and the local subtransactions.

In addition to the above components, for the sake of model completeness, we assume a hypo-
thetical Elementary Interface (EI) where the elementary commands Read and Write deal with
elementary database objects. The latter ones are the objects recognized by the specific concur-
rency control method applied by the LTM (e.g. having granularity used by the locking scheme).
The transactional commands Begintransaction, Commit and Abort are as such not supported at
this interface, but the LTM decomposes them into suitable elementary operations.

The main assumptions about the Local Interface are the following:

(1PC) There exists a single-phase transactional interface to the LTM supporting the same
database commands as those at the GI level and the local commands Begin-
transaction, Commit and Abort.

(DLU) Denied Local Updates. Local transactions do not update objects read or written by
a local subtransaction, while the corresponding global subtransaction is in the pre-
pared state.

(RTT) Real Time Transparency. Any two identical sequences of data manipulation
commands executed at arbitrary points of time produce the same results (in terms
of database state changes and command responses) provided the database objects
read by them have identical values in either case.

The LTMs have the following characteristics:

(SRS) Serializable and rigorous histories. LTM enforces histories that are conflict serial-
izable, and rigorous meaning they are strict [3] and additionally such that no data
object may be written until the transactions that previously read it commit or abort
[15]. Typically, it is sufficient to have the strict locking policy (S2PL) whereby all
objects accessed by a transaction are unavailable to other transactions until
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Commit/Abort. For better clarity, the examples included in the paper, and some of
the argumentation, are based on the assumption that LTMs apply the S2PL policy.

(UAN) Unilateral Abort Notification. If LTM unilaterally aborts a local subtransaction,
this information is passed over to the 2PCA, through the LI interface, on the next
synchronous command return.

(TW) Trustworthiness. After a fixed number of resubmissions, any global subtransaction
that should be committed can be committed.

(LL) LTM Log. LTM maintains its own internal transaction log. By working off the
log, LTM is capable of:
• rolling back any local (sub)transaction or a local transaction and

• undoing and redoing local (sub)transactions and  local  transactions during  the
(LTM-driven) site recovery, if necessary.

(RWMC) Read-Write model compatibility. LTM transforms the high level database manipu-
lation commands into the series of the elementary Read and Write.commands  [3].
The elementary commands are observable at a hypothetical Elementary Interface
(EI).

Failure modes

We are considering two types of failures at Participating Sites:
• Site failure — a system failure (system crash) at a Participating Site. No program state is

retained. Non-volatile repositories (logs) are available for recovery.

• Subtransaction failure — a local subtransaction is aborted unilaterally by the LTM. The
state of the 2PC Agent and the LTM are preserved. This failure may occur either (or both)
before or after achieving the prepared state by the global subtransaction.

We are not dealing with failures types that do not imply special treatment in an environment
discussed, as compared to a homogeneous database system. Such failure types are, e.g.: lost or
corrupted messages, messages arriving out of order, or any type of Coordinator failures. Also,
no special attention need to be paid to subtransactions that have not reached the prepared state
because they may be "legally" aborted anyway.

It is the responsibility of the 2PC Agent to recover all the transactions that had been in the pre-
pared state as the failure occurred. In case of a site failure, this also includes restoring of the
local execution order that corresponds to the global order.

Objectives of the 2PC Agent Method

The 2PCA method, under the assumptions stated above, assures the view serializability [3] of
global histories. A simplified version of the method produces quasi serializable [8] histories1.

1 We use a slightly weaker notion of quasi serializability than that in [Du&Elmagarmid89]; To us, a history H is
quasi serializable if its projection on global transactions H[g] is serializable and each local history H[i] is
serializable.
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Description of the 2PC Agent method

General

The prepared state recovery scheme is based on the idea of the subtransaction resubmission
which is a repeated execution of all the commands belonging to a global subtransaction when a
corresponding local subtransactions had been aborted by the LTM. A transaction resubmission
results in a new local subtransaction. In the process of recovery, the 2PCA may generate many
local subtransactions for a given global subtransaction. Then, all but the last one (in the history)
are in the aborted state. The last one may be incomplete, aborted or committed.

Agent Log

A 2PC Agent maintains its own log (Agent Log) solely for the purpose of recovery of subtrans-
actions that had reached the prepared state.

Every time a global subtransaction operation has been completed, the 2PCA writes the corre-
sponding database language command to the log. Thus a log entry implicitly indicates success-
ful lock reservations as well. The 2PCA also writes the PREPARED record before the READY
message is sent.

Each time a PREPARED record is written, the Agent Log is forced to disk (or other stable stor-
age) to facilitate site recovery. We call this force writing of the record.

When 2PCA receives the COMMIT message, it writes the COMMIT record in the log. This is
to be performed as a part of the local subtransaction so that it can be committed together with
the other operations of the subtransaction. This guarantees that either both the global decision
and the local transaction result are recorded in the persistent storage, or none of them is
recorded. This way of operation is easily achievable by implementing the Agent Log in the
database under the control of the LTM.

Failure time concurrency control

In a failure-free operation, the serializability of global transactions is guaranteed by the strict
two-phase locking (or other equivalent) mechanism of the associated LTMs. The mechanism
fails if there are any unilateral aborts of prepared subtransactions. In case of a local failure it
may re-schedule the transactions in such a way that the subtransaction execution order will
change. For example, assume we have two global subtransactions executing at a given node i:

Ti1[x] — obtained lock on object x, and is in prepared state;

Ti2[x] — waiting for lock on object x.

The resulting execution order is: Ti1[x] < Ti2[x]  ("<" means "executed before") which com-
plies with some global serialization order.

Now, assume Ti1 is aborted by LTM. This has the consequence that Ti1 is rolled back and the
locks held by this transaction are released. Before 2PC Agent manages to recover the state of
Ti1 (i.e. resubmit Ti1), LTM schedules Ti2 for execution. The resulting execution order would
be Ti2 < Ti1 which violates the global serialization order (a cycle appears in the serialization
graph).
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The main problem here is to preserve, at each site, the same local order among local subtrans-
actions that would be attained by way of locking in the failure-free situation. There are at least
two approaches to this problem — one pessimistic and the other optimistic.

In the pessimistic approach, the 2PC Agent has to maintain locks on database objects solely for
the sake of recovery from subtransaction failures. As no 2PC Agent has control over physical
database objects, a logical locking scheme has to be applied. Possible techniques are predicate
locks [12], precision locks [20] or some coarse granularity methods like table locks.

Application of the pessimistic approach would mean duplicating of the locking mechanism
existing in the LTM and a high performance penalty. Since, under the SRS property, the global
histories in a failure-free situation are serializable without any intervention of the 2PC Agent,
we are proposing an alternative optimistic approach here.

At first, the commands of an unprepared subtransaction are executed without any ordering
activity of the 2PC Agent, relying on the local serialization mechanism. Then, at arrival of the
PREPARE message, the 2PCA performs the prepare certification. The objective of the prepare
certification is to ensure that the original local operation order has been preserved in spite of
subtransaction failures. The prepare certification alone guarantees quasi serializability of global
histories in the presence of failures. It is the basis of the single-step certifier of the 2PC Agent.
Once a subtransaction has been prepare certified, it enters the prepared state. If it is rejected, the
REFUSE response is issued or — as an optimization — the certification is retried later.

At the arrival of the COMMIT message, the 2PC Agent may also perform the second certifica-
tion step — the commit certification. The goal of this step is to ensure that no cycles have been
introduced into the global serialization graph by (read-only) local transactions executed during
the subtransaction failures. The goal is achieved by delaying commitment of certain subtrans-
actions. If a subtransaction is commit certified, it may be immediately committed. Otherwise it
is scheduled for a repeated certification at some later point of time. A two-step certifier per-
forming both the prepare and commit certification guarantees view serializability of global his-
tories under the stated assumptions. Both certification methods are discussed below.

Prepare certification

The prepare certification is performed in such a way that the following invariant is not violated:

2PCA Correctness Invariant:

a) no global subtransaction is moved to the prepared state if the corresponding local sub-
transaction is unilaterally aborted and

b) no two global subtransactions have conflicting elementary database operations while
they are in the prepared state.

As usual, a conflict takes place between the unprepared local subtransaction Tiu and an another
local subtransaction Tia at node i if:

(i) Tiu reads or writes a local database object written by Tia at EI,

(ii) Tiu writes an object read by Tia at EI.

The subtle issue in the definition of the conflict is that the elementary database objects and
operations, and thus the definition of conflicts, might be different from site to site. Still, we
assume that, at each site, the local system somehow orders its elementary database operations
in such a way that the SRS property holds for the local history. Thus, a "locally conflict equiva-
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lent" serial history can always be found. Since we only need a serialization order of local sub-
transactions at a site, the possible differences in the implementation of the concept of "conflict"
between two different sites do not actually matter, as long as each implementation of the con-
flict is correct (i.e. each history is view serializable).

If the 2PCA Correctness Invariant can really be kept by the 2PC Agent, then the subtransac-
tions can be committed without jeopardizing the serializability among global transactions no
matter when and if the COMMIT message arrives.

It is basically possible to maintain the Correctness Invariant if only such global subtransactions
are moved to the prepared state that do not have conflicting operations with the already pre-
pared ones. How is it possible to find those global subtransactions? We say that a local sub-
transaction or a local transaction (both denoted in the sequel as "local (sub)transaction") is
active if it is neither locally committed nor aborted. Then the following fact holds:

2PCA Implementation Basis:

If two local (sub)transactions are active at the same time and they have completed all
their operations, then they cannot have conflicting elementary database operations, pro-
vided that the Participant LTM produces SRS histories.

To see that the Implementation Basis is correct, let us assume there is some conflict. This is
possible only if both conflicting transactions are active, or at least one is committed. The latter
is in contradiction with the assumption that both are active. Let them both be active. A result
from the conflict between active transactions under rigorousness is that at least one transaction
must be waiting for some data object (or lock on it) to be released by the other one. This means
necessarily that one transaction would not have completed all its operations, which is in con-
tradiction with the assumption that all operations are completed. Thus, there cannot be conflict-
ing operations.

The certifier using the Implementation Basis needs primarily to ascertain that there is a moment
in the past at which both the prepared subtransaction to be tested and the local subtransaction to
be certified have been active and have performed all their operations. If such a moment can be
found with each of the prepared subtransactions separately, then the global transaction has
passed the test and can be moved to the prepared state, otherwise the state transition is not
allowed (at that moment).

Resubmissions of operations might cause the Correctness Invariant to be violated since the
local database state could have been changed during a unilateral abort by local subtransactions
or local transactions. This is, however, impossible: since the prepared original local subtrans-
actions do not have conflicting elementary operations, and since the local database recovers
correctly (cf. LL property), the resubmitted local subtransaction cannot access (under RTT)
new database objects as compared to the originally accessed. Only intervening local transac-
tions could cause the database state to evolve in such a way that conflicts might arise between
resubmitted global subtransactions (that is, the read-write sets of the resubmitted local sub-
transactions might be different from the original ones). However, based on DLU it can be
shown that the resubmitted commands result in a local subtransaction that is structurally identi-
cal to the original one. Thus, the Correctness Invariant can, at least in principle, be kept in the
environment.

Technically, the certifier algorithm is based on alive time intervals rather than on distinct points
of time. A global subtransaction is alive if the corresponding local subtransaction is active. The
certifier keeps the (last) alive interval of each prepared global subtransaction in a centralized
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data structure and performs interval intersection test between each prepared subtransaction and
the one to be certified. If the 2PCA discovers a non-intersecting alive interval pair, there is
possibly a conflict between the prepared subtransaction and the subtransaction Tiu to be certi-
fied. Thus, the certification fails and the transaction Tiu is aborted by 2PCA (the REFUSE mes-
sage follows), or the certification is retried later. If there is a non-empty intersection with each
prepared transaction, the certification is said to be successful and the subtransaction Tiu also
enters the prepared state.

How does the 2PC Agent know that a subtransaction is alive? The local subtransactions are
regularly checked for a unilateral abort (based on the UAN property, this is possible) and the
upper end of the alive intervals are updated at the same pace, as long as the local subtransaction
is active. The upper end of the interval is not updated while the local subtransaction is unilat-
erally aborted and is being recovered.

Commit certification

When a COMMIT message arrives, the 2PC Agent should commit the local subtransaction.
There is still one complication due to the local transactions. Even under DLU, they might cause
an intersite cycle to emerge into the global serialization graph, if resubmissions and conflicts
occur in a certain way. Example 3 of [6] illustrates such a case. In this example, two global
transactions T1 and T2 operate on two sites a and b but they do not conflict directly with each
other. There are also two local transaction Ta and Tb which have conflicting operations with
both global transactions at sites a and b, respectively. Thus, T1 and T2 conflict indirectly [8]
with each other. In a failure-free situation a possible global serialization order is: T1 < Ta < T2
< Tb. However, If Tb1 gets unilaterally aborted while being in the prepared state (and subse-
quently recovered by the 2PCA), the local serialization order at site b could become Tb2 < Tb
<Tb1. The result would be a global history being neither conflict nor view equivalent to any
serial history.

The commit certification prevents this from happening. Generally, the approach is to delay the
commitment of a global subtransaction (in our case, Tb2) in case the commitment would poten-
tially lead to an illegal local serialization order. One way is to derive a total order of global
transaction commitments, and to enforce it upon the global subtransactions at each site. An
arbitrary global order could, however, contradict with the order generated dynamically by the
local SRS schedulers. Therefore, for any set of directly or indirectly conflicting global transac-
tions such an order should be analogous [15] to the global serialization order established during
normal (failure-free) operation of the system.

Once the 2PCA knows the correct order, it may autonomously decide whether a prepared sub-
transaction should be committed or not. If all the subtransactions that have lower order position
were also committed, the subtransaction in question is commit certified and it will be imme-
diately locally committed. Otherwise it will await repeated certification performed at a later
point of time.

The problem is how to derive the order unambiguously at each site, and in time for the commit
certification to be performed. Various synchronization techniques can be applied. Advantage
can be taken of the fact that, for directly or indirectly conflicting global transactions, the corre-
sponding global subtransactions enter — at each site — the prepared state in the order which is
analogous to the global serialization order. An optimal ordering technique being a good tradeoff
of complexity and restrictiveness is for further study.
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Assume the order T1 < T2 is imposed on the global transactions in the example above. If the
example was run in a lock based system, the effect of the commit certification would be in
creating a deadlock illustrated by the following wait-for-graph [3]: Tb2 –> Tb1 –> Tb –> Tb2.
The first arc represents waiting for the correct commit order, imposed by the 2PCA. The other
arcs represent a typical waiting for locked objects within the LTM. The deadlock has to be
resolved by aborting Tb or Tb2. Because neither LTM nor 2PCA can detect the deadlock
autonomously, a timeout based deadlock resolution have to be used by LTM or 2PCA.

If the Coordinators send COMMIT messages synchronously (i.e. they wait for the acknowl-
edgement before sending the next COMMIT message) a global deadlock involving
Coordinators may also occur. This may be avoided by the following optimization. The
COMMIT message is acknowledged immediately, regardless of the commit certification out-
come. If the commit certification had failed, a PROMISED TO COMMIT record is force writ-
ten into the Agent Log before acknowledging the COMMIT message. The record will facilitate
the subtransaction state recovery in case of a site failure. Also, the response time of the global
Commit command is improved with this implementation. The disadvantage of the approach is
that the database objects affected by the transaction might not be actually released before the
local commit is eventually performed.

Failure-free operation

The following is the summary of the 2PCA algorithm in a failure-free situation:
1. Accept the Begintransaction command and record them it the Agent Log.

2. Accept the database language commands, pass them to the LTM and record them in the
Agent Log upon successful completion; maintain the timestamp of the last command
completion (per subtransaction).

3. Accept the Prepare command; do the prepare certification; if the certification is success-
ful check if the transaction is alive; if it is — force write the PREPARED record in the
Agent Log, update the list of prepared transactions and set the limits of the alive interval
as <last command timestamp,current timestamp>; if prepare certification fails or the
subtransaction gets unilaterally aborted in the mean time, respond with REFUSE, clean
the Agent Log and abort the subtransaction, if still active.

4. Periodically check whether the prepared subtransaction is alive; if it is alive update the
alive interval accordingly, if not — start subtransaction recovery (see next section).

5. Accept the Commit command; do the commit certification; if the certification is success-
ful remove the subtransaction from the prepare list, write the COMMIT record into the
Agent Log, commit the subtransaction in the LTM, and acknowledge the COMMIT
command to the Coordinator; if not successful — force write the PROMISED TO
COMMIT record into the Agent Log, acknowledge the command to the Coordinator and
repeatedly retry the certification later on until it is successful.

6. Repeatedly clean the Agent Log by removing all the committed transactions.

Recovery from subtransaction failures

If there has happened a local subtransaction unilateral abort then
(i) in the unprepared state:  "forget" the subtransaction, leading effectively to the global

transaction abort;
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(ii) in the prepared state:

1. Resubmit (in the original order) the commands of the global subtransaction from the
Agent Log.

2. Once all the operations of the aborted transaction are again completed, reinitialize
the alive interval to just the point of time of the completion of the last recovered
operation.

3. Resume normal operation.

Recovery from site failures

A participating site failure may be considered a massive subtransaction failure because LTM
rolls back all uncommitted transactions during the LTM-driven site recovery, including the
ones that had been in the prepared state before the failure occurred. Additionally, the volatile
state of 2PCA is lost. The Agent Log contains, however, the specifications of all the prepared
global subtransactions. The subtransactions that had been promised to commit are also recorded
in the log.

We are concentrating on the subtransaction state recovery in the following. Consequently, we
assume the connections with the Coordinators can be re-established and the Coordinators
retransmit messages (e.g. PREPARE and COMMIT) infinitively if they are not responded to.

The recovery sequence is as follows:
1. Restart the LTM while disallowing local transactions.

2. Clean the Agent Log by removing data pertaining to unprepared and committed transac-
tions.

3. Resubmit all the prepared subtransactions and the promised to commit transactions. If
the transaction has a PROMISED TO COMMIT record in the Log, then commit it
locally as above. Otherwise, initialize the alive intervals.

4. Enable connections to the Coordinators and allow for local transactions.

5. Resume normal operation.

The global subtransactions may be resubmitted in any order. Still, the global history would be
view serializable. This is, in short, because:
(i) The local transactions are prohibited to access the local database while the 2PCA recovers.

This Denied Local Access (DLA) restriction holds during the 2PCA recovery. Clearly,
DLA implies DLU.

(ii) Since DLU is guaranteed to hold before and during the recovery, the Conflict Invariant is
kept. Thus, no conflict is possible among the global subtransactions during the 2PCA
recovery. Consequently, no new direct arcs between global transactions can emerge in the
global serialization graph due to the recovery of a 2PCA.

(iii) Thanks to the DLA, no local transaction can access the same data any resubmitted local
subtransaction accesses during the 2PCA recovery. Thus, local transactions cannot cause
new arcs to emerge into the global serialization graph during 2PCA recovery.

(iv) Since no new arcs can emerge into the serialization graph during 2PCA recovery, no new
cycles can occur either. Thus, if the 2PCA method produces view serializable histories dur-
ing failure-free operation and in the presence of subtransaction failures, then it produces
them all the time.



13

Correctness of the method

We shall use the model and the results of [3]. However, due to unilateral aborts and subsequent
resubmissions of operations, there might be, in our case, an arbitrary number of local abort
operations in a global transaction and they may occur after the Coordinator has decided to glob-
ally commit the global transaction. What is a transaction that is globally committed but that has
locally aborted subtransactions? To us, it is globally committed but incomplete. It becomes
complete due to resubmissions of operations from the 2PC Agent log and a subsequent local
commit. In [3] the committed projection of a history, C(H), contains exactly all committed
transactions in H. We include only the globally committed complete transactions into the
committed projection. In addition, our C(H) includes all aborted local subtransactions that
belong to globally committed transactions. We cannot simply ignore them in C(H) because a
local abort causes data objects to be released for other global and local transactions in any
phase of execution and this can lead to globally nonserializable or unrecoverable histories.

A transaction execution is modelled by means of a finite sequence of execution trees, and the
results are proven for any execution tree. Each individual tree is a snapshot of a certain phase of
the execution of one transaction and it is contained in the tree modelling the next phase. An
example of an execution tree of a complete committed and incomplete committed transaction is
shown in Fig. 2a and 2b, respectively.

Rj0 x Wj0 x Rj0 y Rj0 z Wj0 z Rj0 v

Rk0 x Wk0 x Rk0 y Rk0 z Wk0 z Rk0 v

Tk :O1
a
O1

b
O2

a
O2

b
Ck

(a)

Tj
a
:O1

a
O2

a
Pj

a
Cj

a
Tj

b: O1
bO2

b Pj
bCj

b

: O1
a
O1

b
O2

a
O2

bGI level

2PC level

EI level

(b)

Tk0
a

: O1
a
O2

a
Ck

a

Tk
a
:O1

a
O2

a
Pk

a
Ck

a

Rk1 z Wk1 z Rk1 v

Tk1
b

:O1
b
O2

b

GI level

2PC level

LI  level

EI level

Tk0
b

: O1
b

O2
b

A k0
b

Tk
b
:O1

b
O2

b
Pk

b
O1

b
O2

b

Tj0
b
: O1

b
O2

b
Cj

b
Tj0

a
:O1

a
O2

a
Cj

a
LI level

Tj Cj

Fig. 2.  Illustration of (a) a committed and complete global transaction Tj and (b) committed and
incomplete global transaction Tk with an aborted local subtransaction.
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If an operation is listed in a node of an execution tree, this indicates that the operation has been
completely executed at a given interface and at the interfaces below it. The only exceptions are
the global C (Commit) and A (Abort) operations, one of which occurs in the root node, when-
ever the Coordinator has got the global abort or commit request from the application and
recorded the decision in the Coordinator log. The leaf level of the tree, i.e. the operations of the
local (sub)transactions, represents a collection of traditional transaction histories [3], each con-
sisting of a sequence of R (Read) and W (Write) operations.

Fig. 2b, for instance, models a global transaction Tk, whose global Commit operation has not
been successfully acted upon yet, and hence it is seen at the GI level but not at the 2PC level. In
the mean time the original local subtransaction Tbk0 had become aborted and the 2PCA
resubmitted it in the form of Tbk1. The latter local subtransaction is locally neither committed
nor aborted, which makes Tk incomplete.

The example above shows that we must model the local commits and aborts separately from
global commits and aborts. Distinction between global and local commits and aborts is to us
also necessary due to the need to model the purely local transactions separately from the global
ones. Further, we must mark explicitly the prepared global subtransactions with P operations to
be able to reason about the properties of the overall system. A P operation occurs in a 2PCA
node of an execution tree, if and only if the status of the corresponding global subtransaction
has been recorded permanently in the 2PCA log.

Because of these changes we must redefine the basic concepts like conflict or view equivalence
and the corresponding serializability concepts in the spirit of [3].

Notations: Tj denotes the jth transaction, Cj  the global commit of Tj at the root, Aj the
global abort at the root. Cij denotes both the local commit and the commit at the 2PCA at
site i. Pij denotes the prepare operation of the global subtransaction Tij at ith 2PCA.
Finally, Aijk is the local abort of the kth local subtransaction of Tj at site i. Rjk[Xi]
(Wjk[Xi]) denotes a read (write) operation, that accesses entity Xi and that belongs to
local (sub)transaction Tijk.❏

Definition 1: Histories. A transaction history H(Tj) is the sequence of R, and W opera-
tions at the leaves of an execution tree Tj, enhanced with Cj, Cij, Aj, Aijk and Pij opera-
tions if they occur higher in a node of the execution tree. The order of operations in the
transaction history is consistent with their real time execution order. A (global) history H
is an interleaving of a finite collection of transaction histories H(T1), H(T2),...,H(Tk).❏

Definition 2: Serialization graph SG(H). Let H be a history. SG(H) is a directed graph
whose nodes are the global and local transactions Th, Tj,... occurring in C(H) and there is
an arc from Th to Tj, j ≠ h, iff there is a pair of conflicting operations (Rhk[Xi] <H
Wjt[Xi] or Whk[Xi] <H Wjt[Xi] ) in H.❏

Together with the existing theory and new definitions we can prove the needed results. We
assume that local systems produce conflict serializable and rigorous histories. At each local
site, that is, in any restriction of a global history H onto ith site, H[i], we can directly use the
results of [3]. Our main concern is then to show that the global system only produces conflict
serializable histories. The result can be shown only if there are no unilateral aborts after a
2PCA has voted READY for a global subtransaction. If there are unilateral aborts of the global
subtransactions in the prepared state, the conflict serializability cannot be proven in general any
more. The conflict serializability can still be proven for a restriction of any history H onto
global transactions, H[g], provided DLU is obeyed. Because the local histories H[i] are rigorous
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and serializable, the result means that at any case 2PCA method yields quasi serializable histo-
ries.

The cyclicity of serialization graphs SG(H) in general also makes it questionable whether
resubmitting operations makes any sense or under what conditions it makes sense. What are the
reasonable local transactions? Using the DLU assumption to restrict local transactions and
assuming that local systems only produce conflict serializable and rigorous histories it is possi-
ble to show that all histories emerging are view serializable in spite of cyclicity of SG(H). This
is our main result. It makes the strategy to use resubmissions reasonable but also illustrates the
most severe limitation of the method. Here we only sketch the results, detailed definitions and
proofs can be found in [33].

Theorem 1: Serializability theorem. A history H is serializable iff SG(H) is acyclic.

Proof: We can use directly the theorem 2.1 of [3], since we can define the concepts in a similar
way. The only difference is that the definition of conflicts above includes site identity.❏

We continue by showing that using local aborting is appropriate in any phase of global or local
transaction. The theorem is the basis of the implementations that use local aborts to resolve any
problems like deadlocks, program errors, etc. It also shows that resubmitting of operations is
safe at least as long as they are not committed.

Theorem 2. Let H be a serializable history and H´ be a history that is formed from H by
adding some R, W, or A operations into it so that H is a prefix of H´. Then H´ is also
conflict serializable.

Proof sketch: Follows from the fact the serialization graph SG(H) does not change if neither
new committed transactions are added into H in H´, nor new operations are added to transac-
tions committed in H. Thus SG(H) = SG(H´) and Theorem 1 yields the result.❏

Unfortunately, one cannot include arbitrary local commit operations into H´ so that SG(H´) still
remains acyclic. The Coordinators and LTMs should, of course, commit only such transactions
that the acyclicity of SG(H´) is preserved. We call a transaction simple if it is a local transaction
or if it is a global transaction that has at most one local subtransaction at a site. If no local sub-
transaction Tij0 was unilaterally aborted after the global subtransaction Tij was moved into the
prepared state at any site i where Tj has a global subtransaction, no resubmissions are needed
and the whole global transaction Tj remains simple (see Fig.3a). The following theorem shows
that the overall system produces conflict serializable histories as long as no unilateral abort
happens after the ith 2PC Agent moved the local subtransaction to a prepared state (Pij occurs
in H).

Theorem 3. Let H be a history. If all globally committed transactions in H are simple and
each local system produces only locally serializable and rigorous histories then H is glob-
ally conflict serializable.

Proof sketch: Each local transaction is by definition simple and each globally committed trans-
action has this property by assumption. Thus, for any committed completed global transaction
there is at most one local subtransaction at each site. Based on the rigorousness and serializabil-
ity of the local histories we can show that the global serialization graph consists of acyclic sub-
graphs of the local serialization graphs SGi(H) defined over locally committed (sub)transac-
tions only. Assuming that there is a cycle in the union of the graphs, i.e. in SG(H), leads to a
contradiction with respect to the order of global commits in H (cf. [5], or p. 78 of [3]).❏



16

Note that a sufficient condition for the rigorousness and serializability of local history H[i] is
that the ith local system uses strict 2PL (see [3], p. 78). It is not, however, a necessary condi-
tion. Any other method, or combination of methods that guarantees local serializability and rig-
orousness, suffices.

The previous two results are the strongest general ones that we can achieve in the sense that no
restrictions are enforced upon transactions. If we drop the fairly unrealistic assumption that uni-
lateral aborts do not occur after a global subtransaction Tij has been moved to the prepared
state (i.e. after a Pij operation in H) then the conflict serializability of an arbitrary history H
cannot be any more proven. For this reason we restrict local transactions by DLU. Even under
DLU there might be cycles in the SG(H), that is, the system does not produce conflict serializ-
able histories. But maybe they still are view serializable? This is indeed true under DLU.

To show that the 2PC Agent method really makes some sense in the presence of arbitrary uni-
lateral aborts we show that, under DLU, the global histories are  v i e w  s e r i a l i z a b l e . To
proceed to this result let us first prove that ignoring the local transactions (or prohibiting them
or submitting them as global ones) yields serializable global restrictions, H[g], of histories H
onto global transactions.

Theorem 4. Let H be a history and the restrictions of it into local histories, H[i], be
locally serializable and rigorous. Under 2PCA policy the restriction of H onto global
transactions, H[g], is conflict serializable, i.e. SG(H[g]) is acyclic.

Proof sketch: We drop the local transactions from the history H and look at the reduced global
history H[g]. On the basis of the properties of the 2PCA and local LTMs and DLU we show
that no cycles can emerge into the serialization graph SG(H[g]), even if resubmissions occur.
The reason is that 2PC Agent maintains the Correctness Invariant and thus prohibits such
global subtransactions to be moved to the prepared state that have conflicting elementary
operations with the already prepared subtransactions at that site. Consequently, when a pre-
pared subtransaction is committed, it cannot have conflicting elementary database operations
with any other global subtransaction that was simultaneously in the prepared state at that site.
Hence, there cannot be cycles due to such transactions in SG(H[g]). Assuming other cycles in
SG(H[g]) leads to the same contradiction as in the proof of Theorem 3. ❏

Theorem 5. If H is conflict serializable then it is view serializable.

Proof sketch: We can argument exactly like in Th 2.4. of [3], in spite that the definitions had to
be modified.❏

Theorem 6. If local transactions obey DLU and local systems produce locally rigorous
and conflict serializable histories then 2PC Agent method produces view serializable
global histories.

Proof sketch: Let H´ be an arbitrary prefix of H and SG(H´) be the serialization graph of H´. If
it is acyclic the claim follows from theorem 5 for it and all its prefixes. Let us assume that there
is a cycle in SG(H´). Our strategy is to show that in spite of the cycle in SG(H´), we are able to
find a serial history H´s that is view equivalent to C(H´). To find this we reduce C(H´) to
C1j(H´) in such a way that all aborted local (sub)transactions are removed. Consequently, all
intrasite cycles among global subtransactions and local subtransactions at a site, caused by
resubmissions, disappear from SG(C1j(H´)). The prepare certification guarantees that no two
subtransactions can reach prepared state at the same time at any site if they have conflicting
operations in the original local subtransaction. From DLU it follows that they will neither have
conflicting operations in their possible resubmissions. Together these facts guarantee that the



17

Correctness Invariant holds, which in turn means that no cycles can occur in the restriction of H
onto the global transactions, H[g].

The commit certification orders the local commits of the local transactions into the same order
at each each site. This prohibits intersite cycles which involve at least two global transactions
and at least one local transaction at a site in SG(C1j(H´)). Thus, the two-step certifier guaran-
tees that there are no cycles at all in SG(C1j(H´)) and a topological sort of it can be performed.
By theorem 5, the reduced history C1j(H´) is view equivalent to a resulting sorted serial one,
Cij(H´s). After that, we add the removed subtransactions back to both histories to get H´s and
C(H´). The conflict order of local transactions and local committed subtransactions cannot be
different in the four histories due to local serializability and rigorousness. Based on this we
show that the global reads-form relation remains identical in C(H´) and H´s, since it is identical
with that of the reduced histories. The argumentation is based on DLU. The final writes also
remain the same in both histories as each added write becomes later aborted and thus cannot
change the final values.❏

The previous result shows that forward recovery (resubmissions) used by the 2PCA is reason-
able under DLU. It allows globally written data to be read by local transactions but not updated
while a global subtransaction is in the prepared state. Let us look at Fig. 2b. It is easy to show
that if we did not restrict in any way the local transactions, then the view serializability cannot
be proven for histories with a cyclic SG(H). The reason is that the resubmitted operations, e.g.
the local subtransaction Tbk1 in Fig 3b, might read other values than the first submission, Tbk0,
did since an intervening local transaction, say Tl, would have been able to update a local object
between Tbk0 and Tbk1. Therefore, Tbk1 gets another view than Tbk0, and consequently Tbk1
might also update the local database in a way that differs from that of Tbk0.

Remaining problems

We did not address here the problem of when does a transaction run to end. As was shown in
[16] global and local transactions might deadlock so that neither a global nor local deadlock
detection is possible. Theorem 2 above shows that it is safe to abort any transaction on the basis
of time-out or some other criteria by the 2PC Agent or by the local system at any time — even
if the global subtransaction was in the prepared state and already globally committed. It is
especially important to understand that also site failures lead to such a local abort, as a side-
effect. Thus, a sufficient condition for hidden deadlocks [16] to be resolved is that the sites fail
from time to time — or that 2PC Agent aborts local subtransactions that wait too long. To show
that global and local transactions really run into completion we have to show further that no
arbitrary many livelocks occur. Actually, TW assumption guarantees this. The occasional site
failures also suffice to guarantee that Coordinator failures do not block local or global transac-
tions forever. The overall issue of termination is studied more closely in [33].

We did not address here the problems of optimizing the certifier. There are basically three pos-
sibilities. The certifier could store all alive intervals of subtransaction instead of only the last
one and use any of them. Another idea is that the prepare certification can be retried several
times if it fails. Under which condition this makes sense is for further study. Third possibility is
to check explicitly conflicts between operations of the subtransactions if the prepare certifica-
tion fails between the prepared subtransaction and that to be certified. This optimization func-
tions correctly only if the local conflicts can really be deduced by looking only at the com-
mands known to the 2PCA. However, usage of triggers at the local database make this assump-
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tion invalid in general. It is for further study, what would be a suitable conflict detection mech-
anism based on the logged commands, if the other prerequisites would be fulfilled.

Can the DLU assumption be relieved? Evidently, but then we have to look at the semantics of
transactions. By removing the DLU restriction totally, we would arrive at the situation where
the method produces locally serializable histories in all situations. In order for such global his-
tories to be meaningful, the semantics of the transactions would have to be restricted as com-
pared to the general case.

There are certain performance deficiencies related to the proposed architecture and method
when compared to a homogeneous system. The prepared state certifier consumes some addi-
tional resources, especially when a site is in a state of failure (unilateral transaction abort).
Additionally, not all types of read-related optimization [26] of the 2PC/2PL protocol are possi-
ble. The read locks can not be released at the reception of the PREPARE message because the
2PCA has no explicit control of the database locks maintained by the LTM. However, the read-
only global subtransactions may be recognized and committed by the 2PCA at the reception of
the PREPARE message.

Prototype implementation

A prototype multidatabase transaction management system called HERMES has been imple-
mented at the Laboratory for Information Processing of the Technical Research Centre of
Finland (VTT) in Helsinki. HERMES includes the two-step certifier based 2PC Agent soft-
ware. It is associated with the INGRES DBMS (Ingres Corp.) playing the role a single-phased
database system. The other DBMS is the two-phased SQL Server (Sybase Inc.). The database
access protocol of the SQL Server product family is used in the system, together with the
related network interface software. The system has been implemented on Sun (Sun
Microsystems, Inc.) and VAX (DEC) computers in a mixed UNIX and VMS operating systems
environment.

Conclusions

The 2PC Agent Method enables to integrate ordinary database systems with a single phased
transactional interface into a multidatabase system in which the Coordinators can run a stan-
dard two-phase commit protocol. The basic assumptions of the local systems are that they pro-
duce locally serializable and rigorous histories and that the transactional interface allows
database manipulation operations to be dynamically generated. Local systems need not be mod-
ified in any way, and unilateral aborts and site failures are allowed in any phase of execution.
Unilateral aborts are remedied by resubmitting the aborted operations by the 2PC Agent from
its log. The local transactions are restricted in such a way that they do not update the data
retrieved or updated by the global transactions being in the prepared state (the DLU assump-
tion).

In spite of the unilateral aborts and otherwise arbitrary local transactions, the method guarantees
conflict serializability among global transactions. The overall histories produced are view
serializable if the two-step certifier (including both the prepare and commit certification) is
used, albeit they are not necessarily conflict serializable. Any history is quasi serializable using
the single-step certifier (prepare certification only).

The significant cost of the method is represented by two log force-writes per transaction at a
Participant Site with a single-step certifier. This is the same as in a conventional 2PC imple-
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mentation. The two-step certifier requires occasionally an additional force write per transaction
at some sites. All the algorithms of the 2PC Agent method are of polynomial complexity.

The major advantage of the method, as compared to the approach of Breitbart, Silberschatz and
Thomson [6] is that it does not call for any centralized transaction management or recovery
activity in a multidatabase system
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