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Abstract

Intelligent Networks are evolving as data-intensive multi-layer
information systems. Databases can be found within or associated
with various functional entities of the IN reference model. The
aspects of database distribution and heterogeneity are present both
within the functional entities and between them, in a real implemen-
tation. In particular, the Service Data Function (SDF) has to be
implemented in such a way that two different physical entities: the
Service Control Point and the Service Management Point have access
to the SDF. What makes an IN system a different kind of a dis-
tributed and heterogeneous information system is that correctness
and reliability requirements vary vastly among different physical
entities–and yet transactions are supposed to span many physical
entities (real systems). A reference model of IN data management is
proposed whereby the full service lifecycle is addressed, including
service creation, deployment, provisioning and execution. Essential
data management requirements are presented. The needs of transac-
tion processing is presented from the point of view of service pro-
visioning and execution. A classification of transactions interacting
with the SDF is proposed, and a corresponding correctness criterion
is suggested.

1 Introduction

The term Intelligent Network (IN) was introduced within the telecommunica-
tions industry to denote a telephone network offering services beyond simple
connectivity [AMS89]. A few examples of best known IN services are listed
below.
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• Freephone (or 800-number service) allows callers to make transparent
connections to pre-defined, and possibly changing, service provider's
routing (destination) numbers. The calls are billed to the service
provider.

• Premium Rate allows callers to reach services in the same way as in
the Freephone service, with the difference that the calls are billed to
the caller, using special, service-specific, rates.

• Virtual Private Network enables to simulate a private exchange (PBX)
in a public network.

• Plethora of Calling Card applications allow for personal customisa-
tions of the telephone service with regards to billing and connectivity.

The first generation IN systems were introduced in the USA at the end of
1970's. A first generation IN system made use of programmable, computer-
based switches which started to proliferate at that time. The required services
had to be implemented into numerous switches in a telephone network. This was
a costly and cumbersome process for network operators, taking into account the
proprietary nature of switch programming techniques. Additionally, it turned
out that data management issues became an overwhelming problem: the data of
thousands of customers and service specifications had to be maintained in a
flexible way, and new service had be introduced promptly. The switch-based
technology did not allow for any of that.

In response to market demands, in mid-1980's, Bellcore started a vast
effort to define a new standard technology (called also Advanced Intelligent
Network, AIN, to differentiate it from the first-generation technology). The
effort became quickly a field of co-operation and standardisation. Currently, the
standardisation activity is concentrated in ITU-T (International Telecommuni-
cation Union, formerly CCITT), Study Group XI. ITU-T has produced the so-
called Q.1200-series of recommendations [ITU93] specifying a first phase of IN
systems, known as Capability Set 1 (CS-1). CS-1 includes most of currently
known IN services. They are characterised by the centralised (or single-point)
control of a service instance and a strong telephony orientation. Future
Capability Sets will take into account distributed services and, among others,
multimedia services.

First implementations of the standard IN technology are already on the
market. They offer new potential but also introduce new problems which are
discussed in this paper.

In terms of the IN reference model, an IN system is a distributed infor-
mation system, with databases possibly located within different (hardware or
software) components. From the point of view of the network operator, the IN
system is, in the long run, inherently heterogeneous, because the components
may be acquired from different sources. To cope with this problem, suitable
interoperability techniques have to be defined. In Section 2, various data realms
with an IN system are discussed and one of them–the data related to the service



3

life cycle support–is selected for further analysis. In Section 3 a reference
model for database interoperability within IN is proposed.

An IN system is tightly coupled with a switching equipment. Because the
switching equipment is a real-time component, there are also real-time compo-
nents (i.e. such that deadlines have to be taken into account) in a IN system.
There are also components that are non-real-time. Because of different natures
of the two types of components, maintaining data  consistency within the system
may turn out to be very difficult, and new transaction management techniques
are required. The transaction management issues are discussed in Section 4. The
Summary concludes the paper.

2 Data realms in an IN system

Running IN services requires a lot of data to be in place and to be moved
throughout the system. The first data realm involves the data needed to manage
the system. These are data related to [Ahn94]:

• configuration management

• accounting management and billing

• performance measurements and statistics

• fault management

• security management

• network operations planning

The concepts of Telecommunications Management Network (TMN) and Mana-
gement Information Base (MIB) are related to the above data. Because of lack
of space, this realm will not be dealt with in this paper. For more on the subject,
see, e.g. [Ahn94].

The other data realm deals with the maintaining of an IN service through
its lifecycle. The lifecycle of a service may be characterised by the following
phases:

(1) Service creation. A new generic service (service type), which has
been conceptualised, is represented in a computer-readable form
required to make the service operational. This may involve many
steps and various representations, e.g. a program may be written to
implement a missing elementary service component (a SIB, service-
independent building block), a the decision logic of the service may
be represented using a graphical or textual language, and database
structures necessary for the service execution and provisioning may
be defined using some data definition language.

(2) Service testing. A new generic service is tested in a simulated envi-
ronment. The service definitions produced in step (1) are used.
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(3) Service deployment. A new generic service is moved to the opera-
tional environment. From now on, it can be provisioned (i.e. sold to
customers) and used.

(4) Service provisioning. Customers subscribe to the service. Service
instances are created. Some instances may be direct (unmodified)
instances of the generic service (e.g. a simple Freephone service
with a single routing number). Other instances may be created by
modifying the generic service. i.e. a service subclass is created and
instantiated (e.g. a Freephone service with routing depending on
time of day and day of week).

(5) Service execution. Callers activate the service instances by making
IN calls (i.e. telephone calls triggering IN service execution). In
some cases customers can modify the service instance by changing
the service parameters (e.g. changing a routing number).

(6) Service deletion. Both the service type and instance data are
removed from the system. The service can be neither provisioned
nor used any more.

3 Interoperability and service lifecycle

Different IN system components are involved in different phases of the service
life cycle. The IN reference model uses four different conceptual planes to pic-
ture dependencies among different components: the Service Plane, the Global
Functional Plane, the Distributed Functional Plane and the Physical Plane. For
brevity, only the Physical Plane will be discussed here. It depicts relationships
between physical entities (real systems) and abstract functional entities. A typical
(one of many possible) IN configuration represented on the Physical Plane is
shown in Fig. 1.

The SSP is connected to a telephone switch and is responsible for captur-
ing IN calls and directing them to the SCP. An IN call is a telephone call where
the dialled number has been associated with an IN service. Such a number is
called a service number. If a service number is recognised by the SSP, a trigger
is activated, and the IN service request is passed to the SCP. The SCP is the
operational execution engine of IN services. It uses the SCF to execute the ser-
vice logic and the SDF to access the data related to service types and instances.
In most cases, eventually, the SCP tells the SSP which routing number the call
should be connected to. The SMP is used to manage the service type and instance
information for the sake of SCP. Among others, new services and new cus-
tomers are added using SMP. SCEP is used to create new service types. The
arrows in Fig. 1 show different kinds of service data and metadata flows in the
system, characterised by the lifecycle phase the data is created in. Note, that



5

adding of a new service or a new customer does not affect the SSP and underly-
ing switches, which has been the purpose of the new architecture1.

OSS in Fig. 1 denotes Operations Support System encompassing other
systems at the telecommunications operator, which may be connected to the IN
system. However, the role of and interaction with OSS is not discussed in this
paper.

OSS

SMP

SCP

SSP

SSF

SCEP

SCF

SDF SCEFSMF

SDF

service creation data

service provisioning data

service execution data

Legend

Physical Entities Functional Entities
SSP: Service Switching Point SSF: Service Switching Function
SCP: Service Control Point SCF: Service Control Point
SMP: Service Management Point SDF: Service Data Function
SCEP: Service Creation Environment Point SMF: Service Management Function
OSS: Operations Support System SCEF: Service Creation Environment  F.

Fig. 1.  An example of the Physical Plane configuration.

One functional entity deserves special attention: the SDF. It can be understood as
a database system. The IN reference model does not provide any indication on
the implementation techniques, and in particular whether it should be distributed
or not. From an abstract point of view, only one instance of SDF is required
[Raa94], shared by the SCP and SMP. It has been already recognised that,
because of different timing requirements related to different data, it should be
implemented partly a main-memory-based and partly as a disk-based database
system [Tai94]. However, we can see that a single implementation of SDF would
cause at least the following problems:

• Traditional, SMS-originated transactions would block the SCP-
originated transactions for unacceptable long periods of time.

1 In reality, adding of a new service may require modifying trigger specifications in SSP.
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• Because the system availability requirements of SCP would exceed
those of SMP, a shared solution may be of inferior availability.

• Different transactional requirements require different transactional
mechanisms (more on this in Section 4).

Therefore, there exist justifications for a further claim: because of different
database requirements at SCP and SMP, there is a need for at least two
corresponding implementation instances of SDF, as shown in Fig.1. There may
be more of them if SCP or SMP sites are multiplied.

Distribution of SDF in a real system introduces various interoperability
problems. They are illustrated in Fig. 2, where different service life cycle
phases (exclusive of service testing and deletion) of a SIB-based service are
shown using the notation of the ANSI/SPARC DBMS model [Jar77].

SIB
designer

SIB
generator

Service
designer

Service 
generator

Provis.
designer

Data entry
generator

SCEP

SMP

SCP

SDF

SDF

Service
provisioner

SIB to SDF
transformation

Service to SIB
transformation

Data entry
application

SIB to SDF
transformation

Service to SIB
transformation

Service 
execution
process

Fig. 2.  Service life cycle management model.

The uppermost part of the picture illustrates the service creation phase.
Firstly, a set of SIBs has to be created. A SIB is an elementary building

block of a service. It can be understood as an object type encapsulating an
elementary behaviour (e.g. "connect to the routing number X" or "charge
number Y") and data attributes being, essentially, volatile date, i.e. data
maintained only during the call instance or such that otherwise need not be
persistent. A simplest way to develop SIBs may be to write them in a
programming language like C or C++. The SIB specifications have to be
translated to a form which is executable at the SCP and also to specific
transformations (mappings) enabling to call a SIB from within a service, at the
service run-time, and to transaformations enabling provision the SIB during the
provisioning run-time.
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Secondly, a service type is defined. It is a control structure including used
SIBs and relationships thereof. Persistent data structures are also defined. The
data may be static (created and changed only by the provisioning process) or
dynamic (possible to change in effect of a caller's activity). An example of the
latter one is a "follow-me" routing number which a customer may change at
will. Usually, a special language is used to specify services. Necessary data
mapping have to be created both for the service execution and provisioning.

Thirdly, a provisioning application has to be specified. This process is
similar to building a typical database application. Data entry screens have to be
defined and the necessary procedural part created. To automate this process, the
SIB and service type specifications can be used.

According to Fig. 2, once the activities of the SIB creation, the service
creation and the service provisioning implementation are completed at SCEP,
both the provisioning system and the execution system for the service are in
place. The middle part of Fig. 2 illustrates the interaction of run-time compo-
nents of the service provisioning activity, and the bottom part corresponding
aspects of the service execution activity.

Both the provisioning activity and the execution activity access data which
are logically the same data. The data are however in different physical
databases, meaning the data are replicated. This means a replication activity is
required to maintain the copy consistency. This activity is shown in Fig. 2. as
data flows between the SCP-base SDF and the SMP-based SDF.

If we deal with a heterogeneous environment, and the three parts of Fig. 2
are implemented using incompatible systems, necessary format conversions
(shown as shaded circles in Fig. 2) have to be applied. As in a heterogeneous
database, various schema, command and data conversion techniques [SL90] can
be utilised. Unfortunately, no standardised interfaces or related representation
formats exist for IN systems.

4 Transaction management requirements

In a real IN system, transactions span different physical components. Let us
concentrate on interworking of SMP and SCP, where most severe problems
occur. The problems result from the significant differences in nature of the two
systems.

The SCP may be characterised in the following way:

• A real-time system. Although there are no hard deadlines, the service
execution requests are to be processed promptly, with the median
service execution time of the order of 100 ms.

• A main-memory-based database. Because the required SDF response
time is of the order of 10 ms or less, the SDF is implemented in main
memory.
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• Relaxed transaction processing. In order to meet response time and
throughput requirements, real implementations do not support some
of the transaction capabilities: most often the atomicity and durability
are compromised.

• High availability. SCP should support uniterruptable and continuos
operation. The required availability figure is of the order of 99.99%.
This is achieved by fault-tolerant techniques, namely the hot stand-by
architecture with either synchronous (duplicate components are fully
consistent at all times) or asynchronous (there is a delay of updating
the stand-by) replication.

• Relaxed recovery. Because of stress on fault-tolerance, the recovery
capabilities are of secondary importance. Some data (namely, the
volatile and the dynamic data) may be lost during recovery.

The characteristics of SMP are the following:

• A traditional on-line transaction processing  (OLTP) system. No real-
time requirements, response time tailored to human operators, usually
required to be within seconds.

• A disk-based database.

• Full transaction capabilities.

• Moderate availability. Availability typical for business data processing
systems is required, i.e. in the range of 95–98%.

• Full transaction-based recovery.

Both SCP and SMP use, in most parts the same service-type-specific and ser-
vice-instance-specific persistent data. Because of the differences in the nature of
the systems, the data have to be replicated. Maintaining transaction processing in
the presence of a replicated database, in such a heterogeneous environment, is a
challenge. No synchronous copy processing (i.e. with a transaction) is possible.
The reasons are:

(1) SCP-originated transactions should not access the SMP database
because of time constraints and availability requirements.

(2) SMP-originated transactions should not access the SCP database
because this would possibly jeopardise the data availability at SCP.

The above characteristics also precludes use of known copy algorithms which
require to maintain a master copy or to access synchronously a number of sites.
It is also obvious that achieving serialisable global histories in the system is
impossible.

In the rest of this section, a characterisation of the involved transaction
types is proposed and a new correctness criterion is suggested. The discussion is
based on the assumption asynchronous data replication techniques are used.

Let us assume a transaction involving the SDF in SCP and SMP falls into
one of the following disjoint classes (Fig. 3):
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CT1

static data
dynamic data
volatile data

static data

dynamic data

CT3

CT2

MT2

MT1

MT3SMP

SCP

Fig. 3.  Types of transactions spanning SCP and SMP.

CT1 Service control transaction accessing volatile data only. Volatile
data are data generated by the SCF and are of no interest to the
SMF. Such are e.g. state variables and various measurement coun-
ters. The summaries of the latter ones are transferred to the MIB
part of the system.

CT2 Service control transaction reading static and dynamic data.

CT3 Service control transaction modifying (replicated) dynamic data.
Dynamic data modifications are initiated by the service user who
may, e.g. enter a new routing number. In CS-1, the data modifi-
cations are "blind writes" (the written value does not depend on any
read value). CT3 updates, logically, replicated data items. It is
implemented as two transactions: the base transaction and the data
propagation transaction.

MT1 Service management transaction reading dynamic data.

MT2 Service management transaction modifying static data. MT2 is
implemented as two transactions: the base transaction and the data
propagation transaction.

MT3 Service management transactions modifying (replicated) dynamic
data. MT3 is implemented as two transactions: the base transaction
and the data propagation transaction.

We assume certain implementation of the distributed transactions. Any transac-
tion Ti writing replicated data items (i.e. being of the CT3 or MT3 type) is
decomposed into two detached part-transactions :
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Tbi the base transaction writing the item(s) at the primary site,

Tpi the propagation transaction writing the replicated item(s) at the
secondary site.

The primary site is SCP for CT3 transactions and SMP for MT3 transactions.
The replication transparency is achieved by executing explicitly the base part-
transaction Tbi only. The propagation transaction Tpi is invoked automatically
by an asynchronous triggering mechanism. The failure atomicity of the Tbi–Tpi
pair is provided by using replication logs. However no concurrency atomicity
(isolation) is provided

All of the transactions are required to be atomic. In cases when only one
item is updated, the atomicity requirement is reduced to the requirement that the
execution of a database command is atomic. All the MTx transactions are
required to be durable. The durability is not mandatory for CTx transactions
(because the updates by the CTx transactions are of secondary nature, and the
probability of a failure is small in a fault-tolerant system).

We say that any two transactions T1 and T2 conflict with each other if
there is there is a pair of the corresponding operations o1 and o2  conflicting
with each other in terms of the traditional r-w conflicts [BGH87]. Possible
conflict types are: read-write, write-read and write-write.

Transactions of the CT1 class do not conflict with transactions of any
other class. Because the implementation of this transaction class is trivial, the
class is not discussed on the sequel.

Mutually conflicting are the following transaction type pairs involving
SCP and SMP originated transactions:

• CT2–MT2 (read-write conflict). The requirement is that the transac-
tions are serialised with respect to each other.

• CT2-MT3 (read-write conflict). The requirement is that the transac-
tions are serialised with respect to each other.

• CT3–MT1 (read-write conflict). The requirement is that the transac-
tions are serialised with respect to each other

• CT3–MT3 (write-write conflict). The requirement is that the transac-
tion should be

As concerns correctness of interleaved transaction executions, the primary
requirement is that the committed projection [BGH87] of the global history over
the MTx transactions is serialisable. Another requirement is that the inclusion of
the CT3 transactions produces also a serialisable history. The problem here is
that, in the case of the CT3–MT3 conflict, the effects of a data modification
transaction is demonstrated by the data propagation transaction executing at a
replication site once the base transaction has been already committed at the pri-
mary site. This may lead to serialisability errors of the lost update type.
However, if the conflict is detected, it can be resolved by removing (deleting)
one of the offending transactions from the history, without invalidating the his-
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tory correctness. This is comparable to aborting a committed transaction and
avoiding cascading aborts [BGH87].

In fact, the goal is possible to achieve within stated assumptions. Note, that
all the CT3 transactions use blind writes. This means no transaction writing to
the database in SCP, as a primary site, is dependent on data written by another
transaction. Thus, a committed CT3 transaction may be deleted without invok-
ing cascading aborts. By deleting a TC3 transaction we mean aborting the prop-
agation transaction and compensating the base transaction which has been
already committed.

We claim this will guarantee sufficient consistency of the SMP database at
all times. As concerns the SCP database there will be intermittent inconsistent
states (when a CT3 transaction is committed and not compensated yet). We sug-
gest to accept such states. In a quiescent state, the SCP and SMP database will be
consistent (having identical values of replicated items) with each other.

The other conflicts types listed above will be dealt with using the data
propagation transactions and local serialisability-preserving concurrency control
mechanisms.

Based on the above discussion, we propose the following correctness cri-
terion for a replicated SDF.

Definition: SM-correctness (service-management-correctness).

An interleaved execution of SCP and SMP originated transactions over a
replicated SDF database is SM-correct if

(1) both the SMP SDF and SCP SDF produce locally serialisable histories

(2) replicated data are maintained using asynchronous data propagation
transactions.

(3) if a CT3-MT3 pair invokes globally nonserialisable history, the CT3
transaction is deleted.

The above correctness criterion is acceptable if the service semantics allows for
lost of some user-originated transactions. There is a suitable analogy within the
basic connection service: some calls fall through and are not connected. What is
important from the service quality point of view is that the failure rate is held
within a certain limit.

Another dimension of difficulty is introduced by further replication of
data among parallel SCPs or SMPs. To cope with the problem, special methods
to guarantee certain level of the overall database consistency, such as. the
Atomic Delayed Replication method of [GJK94] are needed.

Summary

Intelligent network represents a formidable display of interoperability prob-
lems. We have proposed a reference model identifying database access problems
in an IN system, with respect to the service life cycle. The inherent  database
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heterogeneity in an IN system, resulting from different purposes of various
components imperils transaction processing in the system. We have analysed dif-
ferent transaction types and the associated transaction processing requirements.
We can see that satisfactory correctness of the IN system operation may be
achieved by allowing for some SCP-originated transactions to be lost. The cor-
responding SM-correctness criterion has been defined.
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