
LINDA: A System for Loosely Integrated Databases

Antoni Wolski

Laboratory for Information Processing
Technical Research Centre of Finland (V'I~)
Lehtisaarentie 2A, 00340 Helsinki, Finland

ABSTRACT

LINDA is an experimental system for database access in
heterogeneous environments. The goal is to achieve maximum
site autonomy and as much database access homogenization as
possible. We start by discussing the problems to be solved and
justifying design priorities. Major heterogeneity problems are
sketched and the applied techniques are briefly described. We
give an overview of the implementation of the system. We con-
clude with a discussion of the system's applicability.

1. INTRODUCTION
Several heterogeneous distributed database management

systems have been implemented. Among them are experimental
systems like XNDM [Kimbleton&al.79], MULTIBASE [Lan-
ders&Rosenberg82], SIRIUS-DELTA [Litwin82], [Ferrier&-
Stangret83] and PROTEUS [Stocker&al.84], and a few sys-
tems built with operational usage in mind, like ADDS [Breit-
bart&al.86] and Aida/Mermaid [Templeton&al.86], [Temple-
ton&al.87a].

The main stress in research has been on executing global
queries in a heterogeneous database environment. This involved
intermediate (global, pivot) languages, language conversions
and schema conversions.

Most of the systems mentioned, if moved to operational
environments, would be cumbersome. One reason for this is the
way the global schema is handled. A global schema is necessary
for execution of distributed global queries. However, the sys-
tems do not address the problem of automatic schema integra-
tion and updating. Consequently, the global schema is to be
hand-built (either at each site or at a centralized data dictionary
site) following any change at any participating node. This may
be operationally unacceptable in a dynamic, diversified en-
vironment and, additionally, it violates the site autonomy which
is of high value in such environments.

On the other hand, the commercial technology is not ad-
dressing the problem of heterogeneous database access prop-
erly. Currently available distributed database products or
database server products, e.g. SQL*STAR (Oracle Corp.), IN-
GRES/STAR (RTI), SQL Server (Sybase Inc.) and VAX Data
Distributor (DEC), do not support heterogeneity at the DBMS
level. They are built to interoperate with the DBMS software of
the same make at all nodes of a distributed database system.

This is reflected in the design of the corresponding database
protocols, and the fact publishing of the protocols does not
change this characteristic.

Demands for access to heterogeneous databases may be sat-
isfied, in such systems, by using gateways. Typically, a gate-
way is a software subsystem enabling to accommodate a
"foreign" DBMS as a database server in an otherwise homoge-
neous distributed system.

Vendors of distributed DBMS currently offer such gate-
ways. However, because of heterogeneity problems, function-
ality of the foreign nodes is often limited. Additionally, as the
global protocols originate from a specific distributed DBMS
product, the solution is vendor dependent.

We shall focus our attention on pre-existing databases now.
This notion not only stresses the chronology of events - that the
databases had been created before we wanted to integrate them -
but it includes the assumption that the databases were created in
an uncoordinated way, without a common design history. The
objective is, then, to integrate the databases - in contrast to a
process of designing and creating a distributed database.

However, semantically correct integration of participating
schemata may be impossible without an overall conceptual
model which may be unavailable in cases of pre-existing
databases.

At this point, a federated database architecture [Heimbig-
ner&McLeod85] seems to be much more viable. A federated ar-
chitecture does not insist on creation of a global schema. Export
and Import Schemas are means for constructing required user
(external) views in this case. Although no central authority is
required in federated databases, a great deal of cooperation is
necessary among the participating systems.

A slightly different approach is taken in multidatabases as
defined in [Litwin&Abdellatif86]. Here, no special requirement
for cooperation are stated. On the other hand a user is presented
with a multidatabase language enabling the user to perform op-
erations related to different databases at the same time, and to
define interdatabase dependencies. See [Litwin&Zeroua188] for
the comparison of the two above approaches.

We are defining a set of capabilities that is more limited than
any of the above. Shortly, it includes a homogenized (i.e. uni-
fied by appearance but not integrated) view on participating
schemata, and a common database language. A system having
these characteristics, together with full site autonomy, will be

66
CH2695-5/89/0000/0066501.00 © 1989 IEEE

called here a Loosely Integrated Database System (hence:
LINDA).

LINDA is an experimental system of the above type. It was
developed during the 4-year FINPRIT research programme
funded by the Technology Development Centre of Finland
(TEKES), and completed in the early 1988.

This paper describes the implementation of LINDA. The
following section deals with the problem description and
LINDA objectives. Section 3 covers main principles of the
LINDA design and Section 4 is solely devoted to database sys-
tem heterogeneity and techniques to handle it. Section 5 contains
a more detailed presentation of the implementation. In the Sum-
mary we discuss our experience and possible enhancements of
the system.

2. LINDA OBJECTIVES

2 . 1 . Organization and users

The target environment for LINDA is a medium-size or large
business organization where databases had proliferated in a way
typical for decentralized computer systems [Gray86].

Database applications are envisaged to be run at worksta-
tions. A common programmatic interface to the databases is re-
quired to be available at the workstations. The interface should
embody a single set of data types, a single query language
(SQL) and a unified data dictionary service. An interactive in-
terface for ad-hoc usage should also be available.

2.2. Levels of database system heterogeneity

Decentralized systems are inherently heterogeneous.
Databases in such an environment bring a new dimension to the
heterogeneity. We shall discuss some aspects of database sys-
tem heterogeneity here.

In our understanding, the databases are heterogeneous if
they differ in any of the following:

• data model

• database language

• DBMS

and possibly (especially true for pre-existing databases):

• conceptual framework used for defining the database
schema.

A truly successful solution to the problem has to deal with
all the above aspects in some way. In LINDA, we decided to
focus our attention on a subclass of the problems as described
below.

First, we shall distinguish between semantic and syntactic
levels of heterogeneity.

The semantic level concerns the meaning of database objects
in terms of a common universe of discourse (UOD). We en-
counter this kind of heterogeneity if the databases do not share
the same conceptual framework. A simple example is the same
table or column name having different meanings in different
databases (homonyms) or different names having the same
meaning (synonyms).

Solving of semantic problems may be done in one of the
following way:

A. Integrate schema. This is required if distribution trans-
parency is to be provided, and a global schema is to be buik.
Schema integration is difficult if a common conceptual
model can not be found for participating databases.

B. Leave it to be sorted out by the users. In order to make this
easier, any local system should be able to provide as much
information on the local schema and local concepts as
possible.

C. Apply a multidatabase language which enables the user to
specify the inter-object mappings and which may be uti-
lized for execution of global queries.

As schema integration is not feasible here, the approach B,
with the provision to extend it to C in the future, was chosen in
LINDA.

All the other problems may be considered to be at the syn-
tactic level because they have to do with representation of com-
mands, data and metadata. In the first phase we have concen-
trated on relational systems only. The related heterogeneity
problems and the corresponding LINDA techniques are pre-
sented in Section. 4.

There are other heterogeneity issues resulting from different
hardware, operating systems and such. They are addressed by
general-purpose interworking techniques (like Open Systems
Interconnection) and are not within the scope of this paper.

2 . 3 . Site autonomy

The requirements for site autonomy may be broken down in
the following way. We may say that the following characteris-
tics of a site should be unaffected by the process of database
integration:

• database def'mition and the freedom to change the
definition,

• access authorization policy and the way the authorization
is performed,

• user identification and authentication techniques and se-
curity of authentication (e.g. protection of passwords),

• resource usage accounting,

• sovereignty of action - a site must not be forced to per-
form any action on behalf of another site or central au-
thority,

• locality of action - no administrative duties need to be
performed at a site for the sake of the "outer" system.

All of the above are required in LINDA.

An obvious characteristic of site autonomy is that a local
DBMS can not be altered in any way for the sake of a system
like LINDA (this would not be possible with most commercial
products anyway).

3 . T H E PRINCIPLES OF L I N D A D E S I G N

3 . 1 . LINDA units

The LINDA system is composed of LINDA units which
operate at computer sites. A unit is characterized by the fact that
it is associated with one (and only one) DBMS. All LINDA
units have unique names within the LINDA environment.

67

There are two types of units: Client Units and Server Units
(Fig. 1).

Users and applications (jointly referred to as "users" in the
following) interface with Client Units.

A Client Unit provides the user with the service for access-
ing remote or local databases. The unit is associated with a local
DBMS which is a "home" DBMS for the user. The user may
insert query results into a database managed by this DBMS.
This database is called the Client Database.

At the Client Unit, the query passed through a dynamic,
SQL-based interface, is parsed, syntactically validated, trans-
formed to a transfer syntax format and sent to the serving node
for compilation and execution. The received results are trans-
formed into an appropriate format and passed to the requesting
program, or stored in the Client Database. There is always a
Client Unit at a user's local site.

r "1 LINDA LINDA r-

LINDA
Exchange Node

DBMS-3

Fig. 1. The types of components in the LINDA system

A Server Unit is designated to satisfy database service re-
quests originated at local or remote Client Units. One or more
Server Databases, managed by a certain DBMS, are associated
with each Server Unit. The Server Units are accessed remotely
by means of a database protocol or locally by means of the re-
lated function call based interface.

Units of both types may be combined at a site over the same
DBMS. The units operate independently of each other and the
corresponding Client and Server Databases may be either dis-
joint or intersecting.

3 . 2 . Levels of transparency

LINDA supports the following two levels of transparency:

Location transparency: a user is aware of the existence of
distinct databases but he/she need not be aware of where
they reside (at a local or remote site and which one).

DBMS transparency: a user is able to manipulate any
database in the same way regardless of the DBMS managing
the database.

As the schema is not integrated, a distribution transparency,
meaning hiding of the fact that there are distinct databases, is not
provided.

3 . 3 . Database operations

In the first LINDA prototype, a user may:

a) perform a single site data retrieval,

b) store the result of a single site retrieval in the Client
Database,

c) perform a single site data dictionary retrieval.

Capability b) enables the user to assemble integrated snap-
shots of various databases under the user's control.

LINDA is designed in a such a way that multiple site queries
can be implemented easily.

The system does not support server database updates at the
moment but single site updates can be easily added.

Multiple site updates will be required in some environments.
This would require application of global concurrency control
and error recovery mechanisms in the system. We are going to
work on the problem in the near future.

3 . 4 . Application of the RDA protocol

In order to achieve expandability of a network in a
heterogeneous environment, the open systems approach is
needed, i.e. every node should absolutely comply with the
agreed global protocols applied to various levels of data ex-
change abstraction.

In LINDA, we are using the RDA (Remote Database Ac-
cess) protocol [ISO/RDA/88], [ISO/RDA/87] which is under
development at ISO*.

RDA enables one to access remote databases on a point-to-
point basis. The RDA protocol and the service definitions are
presently based on the SQL language as defined in the standard
[ISO/SQL/87]. The RDA service primitives reflect the semantics
of the SQL host language embedded interface. The protocol
transfers the commands and data using a special, efficiency-
tuned transfer syntax. The database commands are transferred in
a parsed, tree-structured form.

RDA goes slightly beyond SQL in that it supports an asyn-
chronous database interface and allows for transfer of multi-row
results.

The LINDA nodes communicate with each others solely by
means of the RDA protocol.

A consequence of the above principle is that a LINDA
Server Unit is an implementation of a standard RDA server.
Also, any standard RDA server may be used in place of a
LINDA Server Unit. This becomes significant once DBMS
vendors incorporate the RDA server capability into their prod-
ucts (as shown for Node 3 in Fig.2.). As this has not happened
yet, the Server Units had to be developed for the LINDA sys-
tem.

* RDA has the status of Draft Proposal (DP) at the time of writing. It is
expected to be finally accepted in 1990.

68

4. C O P I N G WITH SYNTACTIC H E T E R O G E N E I T Y

4.1. Database language syntax

There is a considerable amount of syntactic difference
among relational languages. Even different products based on
"standard" SQL are (at the moment), practically speaking, to-
tally incompatible with each other, with respect to their pro-
grammatic interfaces. The following list highlights the dif-
ferences:

• notion of a database - not all DBMS's allow for creation
and usage of distinct databases identifiable by a name;

• data types - there is a plethora of data types and the
number of them varies from 4 to about 11;

• data representation and resulting precision;

• object naming conventions - ranging from strict,
COBOL-like, to very liberated ones.

In LINDA, the above problems are solved according to the
open systems approach.

The global protocol makes provision for an additional
database name specification, and this is reflected in the global
database interface.

Diverse data types are mapped to global, RDA-standard data
types which originate from the SQL standard [ISO/SQL87]. For
each specific DBMS a mapping table is made, like the following
one prepared for INFORMIX:

INFORMIX LINDA INFORMIX

INTEGER ~ L-INTEGER
SMALLINT
SERIAL

• INTEGER

DECIMAL(n,m) % L-DECIMAL(m,n) ~ DECIMAL(re,n) MONEY(m,n)

FLOAT
SMALLFLOAT ~ L-FLOAT • FLOAT

DATE
CHAR(m) ~ L-CHAR(m) • CHAR(m)

The left part of the table is used when data are retrieved from
a Server or Client database. The right part is used when the re-
suits are being stored into a Client database. The round trip
mapping ambiguity is unavoidable as there are fewer global
types than specific types.

Data type mapping between two different specific systems is
achieved using LINDA types as a "pivot".

For each LINDA data type, the data transferred between
Server and Client units are converted to the corresponding RDA
transfer syntax. The advantage of the RDA syntax is that it deals
with variable length representations so that no precision is lost
in transfer. If the precision is lost in the Client Unit because of
its limitations, the appropriate warning is generated.

The data type and data representation mappings are definable
by means of internal tables used by the Database Access Mod-
ules - - the components of LINDA that are responsible for spe-
cific to global data transformations.

4.2. Query processing

If commercial RDA servers were available, processing of a
query would be reduced to just scanning and parsing the query,
possibly validating it and, subsequently, converting it into the
RDA transfer syntax - all at a Client Unit.

Because LINDA Server Units are built on top of existing
DBMS's, the difficult part is to feed the query from the Server
Unit to the specific DBMS. The requirement is to be able to
execute an arbitrary query dynamically.

Commercial products support some of the following inter-
faces:

A. Interactive terminal query interface. This is a clumsy solu-
tion and has obvious problems: precision of results may be
lost while converting to encoded form, unnecessary over-
head is induced by the encoding and additional overhead is
caused by handling of files that are necessary to accommo-
date intermediate results,

B. "Singleton"(i.e. one-row result) dynamic SQL. Useless for
arbitrary queries.

C. Generalized dynamic SQL with memory-based multi-row
result allocation. Best for this purpose but only few systems
have it.

D. Cursor-based, pre-processed SQL. This can be used in the
following way: for each query command received at a
Server Unit, generate a source program (e.g. in C language)
containing the corresponding cursor definition and fetch
commands; pre-process and compile the program; activate it
as a separate process and pipe the results to the Server pro-
cess.

In LINDA, the interface types A, C and D can be chosen for
connecting of a specific DBMS. The code corresponding to the
selected method is then installed in the Database Access Module
in question.

Another difficult part of the query language homogenization
are slight semantic variations among different implementations.
LINDA, generally, does not try to sort out such differences.
The examples are:

• existence and treatment of null values (e.g. different re-
sults may be obtained while calculating aggregates al-
lowing null values);

• different treatment of duplicate rows in result tables

• different extent of integrity constraints supported (keys,
referential integrity and user-defined integrity con-
straints) that may result in a rejection of a query in one
system and accepting it in another.

4.3 . Authorization, identification and authentication

Any LINDA user who accesses a site is, from the point of
view of the site, identified, authorized and authenticated in the
same way as any local user. In this respect the scheme is similar
to that of Mermaid [Templeton&al.87b]. In addition to this, the
authentication process may be performed at two levels: the node
level and, optionally, the unit (database) level.

At the node level, the user name (user ID) and the password
are supplied by the Client Unit (the user had stored them there).
The encryption scheme is simpler then that of Mermaid which
uses a simulated Enigma machine. In LINDA, the node pass-

69

words are encrypted using the system supplied encryption
functions and the user's special LINDA password as an
encryption key. This way, only the user (or the Client Unit on
behalf of the user) may decrypt them. The passwords are trans-
mitted decrypted, assuming a secure network.

At the unit level, the Server Unit site may request the use of
a second user ID and password to access the database. In this
case, the ID is again supplied by the Client Unit but the pass-
word has to be entered on-line by the user (for maximum secu-
rity).

Thus, the identification and authentication process, together
with the establishment of a data transfer association, is invoked
by the following global interface primitive:

dbopen (unit-name[, db-name][, db-password])

where the following parameters are optional: db-name (for
facilitating distinct databases within a unit) and db-password
(for unit/database level authentication).

We assume that most sites will not use the unit level authen-
tication. This will leave the user with the need to log-in to his or
her "own" workstation only and then enter once the LINDA
password.

Following the identification and authentication phase, any
LINDA activity taking place at the serving node performed on
behalf of the user, is accountable to the user and is subject to all
authorization limitations imposed locally.

4 . 4 . LINDA data dictionary

The LINDA Data Dictionary concepts serve the following
goals:

• location transparency

• DBMS transparency with respect to identification and
authentication,

• DBMS transparency with respect to retrieval of meta-
data.

The first two goals are served by the Client Dictionary
which is a dedicated data structure in the Client Database, con-
taining information about the LINDA environment accessible by
a user. This includes Server Unit names and their network ad-
dresses. It also contains the user's identification and authen-
tication information (ID's and passwords) to be used while
accessing remote nodes and Server Databases. This information
is used by the Client Unit on behalf of the user. The informa-
tion in the Client Dictionary is supposed to be maintained by a
local user or administrator at a Query Node.

The goal of DBMS transparent retrieval of metadata is sup-
ported by means of Server Dictionaries which are virtual data
structures located at Server Units and accessible via regular
global data manipulation commands. The metadata are used by
Client Units for query validation and may also be used by
applications (like a graphical data dictionary browser that was
implemented in LINDA).

The Server Dictionary describes the Server Database in
terms of a full SQL schema. Essentially, it is a set of relational
views defined for each Server Database to map the global dic-
tionary structure to the product specific system catalog. Any
changes made locally to a Server Database schema will be
automatically reflected in the global view of the dictionary.

The global structure of LINDA Server Dictionary is based
on the specifications found in SQL2 [ISO-ANSI/SQL2/88]*.
As some of the metadata covered by the LINDA dictionary is
not maintained and enforced in current systems (notably the ref-
erential integrity information), additional dictionary tables may
be added to the Server Database. These have to be maintained
manually in order to keep up with the changes in database
definition. The additional tables, however, are not mandatory
for correct functioning of the global database interface, and so
the site autonomy is preserved.

The access to the dictionary is performed on behalf of a user
and only the data pertaining to the user's view of the database
are accessible.

4 . 5 . Error message handling

Formats of error messages generated by specific systems
seem to be the least consistent of all, giving a potential for great
confusion.

In LINDA, error messages originating at Server Units are
dealt with in a special way. There are global classes of error
conditions. Many errors can be mapped directly to global error
types enabling orderly error processing at the Client Unit.
Other, unanticipated errors are classified as "open" and the en-
tire error messages are transmitted to the Client Unit.

5. NOTES ON IMPLEMENTATION

5 . 1 . General architecture

LINDA software is built in the form of layers. The top
layer, present in the Client Unit only, is composed of LINDA
applications. An example is GRAFER - a visual query facility
for Sun workstations that was developed in the project
[Tikkanen88].

The second layer deals with global processing (i.e. pro-
cessing of global formats) and telecommunications, and is very
portable. This layer offers a global programmatic database in-
terface at Client Units.

The third layer is responsible for interfacing to local
database systems. The modules here are tailored to specific
products and are portable only within a given DBMS product.

The major components of the LINDA software are shown in
Fig. 2. For simplicity, an arrangement of a Query Node and a
Storage Node only is presented. In the following we shall de-
scribe the system architecture in terms of two main program in-
terfaces present in the system.

5 . 2 . Global Query Interface (GQI)

The Global Query Interface is a callable function library for
advanced database access. It implements the SQL data manipu-
lation commands and may be characterized in the following
way:

• A unified interface to all the databases within the LINDA
environment.

A new SQL standard under preparation. The standard is expected to be
finalized about 1991. SQL2 includes, among others, standard schema
tables.

70

r "1 l

, i I GRAFER Visual Query Application ~ Facility
I I

GQI ~-, Query Interface

LINDA Client Unit

UDI
GQM

Global Query T RDA
Manager .L cl ient

Uniform Remote
Database 1-- ~ UDI Database
Interface Access

Client

CDAM Client Database
Access Module

DBL ~ ~1 (Local) Database Language

DBMS (Local) Database
Management System

CDB

Client
Dictionary Client Databases

LINDA Query Node

Applications I
J

7 RDA-protocol

Global Processing /Ik
I
i Local Processing

LINDA Server Unit

I RDA
-I Server

Iniform
UDI Database

Interface

I Server
SDAM Database

Access
[Module

(Local) Database . ~ .
Language ~ DBL

(Local) Database
D BMS Management System

SDB
Server
Dictionary Server Databases

LINDA Storage Node

Fig.2. Simplified software architecture of LINDA.

• A dynamic, subroutine call based interface.

• The semantics of the data manipulation calls follows the
semantics of the cursor-based embedded SQL.

• SQL query expressions are submitted as character
strings.

• Database opening and closing commands are added.
LINDA units and databases are seen as logical entities at
this level

• Global LINDA data types (which correspond to standard
RDA types) are used regardless of which database is
accessed.

Global Query Manager (GQM) is responsible for routing the
data manipulation commands and query results in the system.
Using the Client Dictionary, it appends network and authentica-
tion information to the commands that are meant for remote
nodes.

GQM performs scanning and parsing of the incoming
queries and translates them into the RDA-like structures (parse
trees) used by the next interface.

GQM also performs the translation of the "depth of re-
trieval". This means that it translates the row-oriented GQI cur-
sor commands into the multi-row UDI (and consequently RDA-
SQL) commands. It does this by buffering the query results so
that they are passed at a row-at-a-time basis to an application
using GQI. This step is necessary in order to make efficient use
of the multi-row RDA protocol minimizing number of messages
exchanged for a query.

5.3. Unified Database Interface (UDI)

The Unified Database Interface is a callable function library
for implementing efficient database access, local or remote,
within LINDA. The characteristics of the interface are as fol-
lows:

• The multi-row data manipulation. The semantics is sim-
ilar to that of a cursor-based SQL but it enables to obtain
result tables of a specified number of rows. The syntax
follows the RDA-SQL syntax.

71

• The level of abstraction of the interface is lower that of
GQI as the network nodes have to be dealt with explic-
itly, and the network error conditions have to be passed
as well (to the GQM).

• The interface is composed of two intersecting sets of
functions. A smaller set (retrieval only) is used by the
RDA Server in the Server Unit, and a larger set of func-
tions supporting inserting of the query results into a
Client Database, is used by the GQM in the Client Unit.

The Database Access Modules perform the translation be-
tween the LINDA UDI calls and the corresponding commands
of a local DBMS. The data type conversion is dealt with as well.
Although some generalized heterogeneity information is main-
tained in program tables (installation parameters), the modules
have to be somewhat tailored to a specific DBMS as well.

To submit the query to a local DBMS for compilation and
execution, one of the techniques outlined in section 4.2 is used.

The Client Database Access Module (CDAM) is used in the
Client Unit and it performs, in addition to database retrieval,
inserting of query results into the Client Database.

The Server Database Access Module (SDAM) has the capa-
bility of database retrieval only and it is used in a Server Unit.

The RDA Client is responsible for translating between the
UDI commands and the RDA protocol transfer syntax. It main-
tains the association with an RDA Server for the time of the re-
mote access session. It is invoked at the beginning of the
database session and terminated at closing of the session.

The RDA Server provides the RDA service accessible via
network. While active, it is expecting requests for associations
from the remote Client Units. Once the association is estab-
lished, it translates between the RDA protocol and the UDI
commands, in the Server Unit. It is implemented in a way en-
abling it to serve many associations at the same time.

5 . 4 The p ro to type

The LINDA prototype was built at the Laboratory for In-
formation Processing of Technical Research Centre of Finland
(VTr/TIK), in Helsinki. The prototype is confined to the UNIX
environment with a local area network (Ethernet). A Storage
Node is implemented in a MicroVAX II computer running EM-
PRESS DBMS, and Sun workstations act as Query and Ex-
change Nodes. INFORMIX DBMS is used at the Sun comput-
ers. The RDA protocol is implemented on top of the BSD
UNIX socket service.

6. C O N C L U S I O N S

The LINDA system as presented here and implemented rep-
resents the minimum functionality required if heterogeneous,
pre-existing databases are to be utilized productively in an
enterprise. With LINDA, the users are able to access databases
residing at different sites in a consistent way. At this time, a
single query is limited to one database only but concurrent query
sessions are possible. The sites preserve their autonomy and
consider any user a local one.

The single site update capability is most obvious possible
extension. It is easy to implement, simply by adding new tokens
to interfaces and the protocol.

A multidatabase language could also be considered. Addi-
tion of this capability would affect the upper layers of the Client
Unit.

We believe that distribution transparency (both for retrieval
and update) is not justifiable in the envisaged environment. It
would lead to serious loss of site autonomy, database availabil-
ity, processing efficiency and would be a difficult and costly
undertaking. The overall loss would outweigh possible benefits
easily.

A C K N O W L E D G M E N T S

Writing of this paper was possible thanks to contributions
by the LINDA project members: Jukka'Aakula (data communi-
cations), Maaret Karttunen (global processing and interfaces),
Leena Sivola (heterogeneity and local interfaces), Matti Tikka-
nen (user interface) and Heikki Tiihonen (project management).

REFERENCES

[Breitbart&al.86]
Yuri Breitbart, Peter L. Olson, Glenn R. Thompson,
"Database Integration in a Distributed Database System".
Proc. IEEE Int. Conf. on Data Engineering, Feb. 5-7,
1986.

[Ferrier&Stangret83]
A. Ferrier, C. Stangret, "Heterogeneity in the Distri-
buted Database Management System SIRIUS-DELTA".
Proc. 8th VLDB Conf., Mexico City, 1983.

[Gligor&Popescu-Zel.86]
Virgil Gligor, Radu Popescu-Zeletin, "Transaction
Management in Distributed Heterogeneous Database
Management Systems". Information Systems, Vol. 11,
No. 4 (1986), pp. 287-297.

[Gray86]
Jim N. Gray, "An Approach to Decentralized Computer
Systems". IEEE Trans. on Software Engineering, Vol.
SE-12, No. 6 (June 86), pp. 684-692.

[Heimbigner,McLeod85]
D. Heimbigner, D. McLeod, "A Federated Architecture
for Information Management". ACM Trans. on Office
Inf. Sys., Vol. 3, No. 3 (1985), pp. 253-278.

[ISO/SQL/87]]
ISO 9075, "Information processing systems - Database
language SQL". International standard, first edition,
1987. Ref. No. ISO 9075 : 1987 (E). Also available as:
ANSI X3.135-1986, Database Language SQL.

[ISO/RDA/88]
ISO DP 9579, "Information Processing Systems - Re-
mote Database Access". Draft Proposal (revised), July
1988. Also available as ANSI X3H2-RDA-88-56.

[ISO/RDA]87]
"ISO Remote Database Access, Tutorial".
ISO/TC97/SC21/N1927, July 1987.

72

[ISO-ANSI/SQL2/88]
"ISO-ANSI Database Language SQL2" (working draft).
ISO/IEC JTC1/SC21/WG3 DBL SYD-2, July 1988.
Also available as ANSI X3H2-88-259.

[Kimbleton&al.79]
S. R. Kimbleton, P. S. C. Wang, E. Fong, "XNDM:
An Experimental Network Data Manager". Proc.
Berkeley Workshop on Distributed Data Management
and Computer Networks, Berkeley, Aug. 1979. pp. 3-
17.

[Landers&Rosenberg82]
Terry Landers, Ronni L. Rosenberg, "An Overview of
MULTIBASE". In: Distributed Data Bases, H.-J.
Schneider, ed. (Proc. 2nd International Symposium on
Distributed Data Bases, Berlin, Sep. 1982). North-Hol-
land, 1982.

[Litwin82]
Witold Litwin et al., "SIRIUS System for Distributed
Data Management". In: Distributed Data Bases, H.-J.
Schneider, ed. (Proc. 2nd International Symposium on
Distributed Data Bases, Berlin, Sep. 1982). North-Hol-
land, 1982.

[Litwin&Abdellatif86]
Witold Litwin, Abdelaziz Abdellatif, "Multidatabase
Interoperability". IEEE Computer, Vol. 19, No. 12
(December 1986), pp. 10-18.

[Litwin&Zeroua188]
W. Litwin, A. Zeroual, "Advances in Multidatabase
Systems". In: Research into Networks and Distributed
Applications (Proc. EUTECO '88, Conf.), R. Speth
(ed.), North-Holland 1988, pp. 1137-1151.

[Stocker&al.84]
P. M. Stocker et al., "PROTEUS: A Heterogeneous
Distributed Database Project". In: Databases - Role and
Structure: An Advanced Course, P.M. Stocker, P.M.
Gray, M. P. Atldnson (eds). Cambridge University
Press, 1984.

[Templeton&al.86]
Marjorie Templeton, David Brill, Arbee Chen, Son
Dao, Eric Lund, "Mermaid - Experiences with Network
Operation". Proc. IEEE Int. Conf. on Data Engineering,
Feb. 5-7, 1986.

[Templeton&al.87a]
M. Templeton, D. Brill, A. Chen, S. Dao, E. Lund, R.
MacGregor, P. Ward, "Mermaid - A Front-end to Dis-
tributed Heterogeneous Databases". Proc. IEEE, May
1987.

[Templeton&al.87b]
Marjorie Templeton, Eric Lund, Pat Ward, "Pragmatics
of Access Control in Mermaid". Quarterly Bull. IEEE
Tech. Committee on Database Engineering, Vol. 10,
No. 3 (September 1987), pp. 33-38. Also in: W. Kim
et al. (eds.): Database Engineering, Vol. 6, IEEE 1987,
pp. 157-162.

[Tikkanen88]
Matti Tikkanen, "LINDA User Interface". In: J. Aakula
et al., "LINDA - Loosely Integrated Databases",
Technical Report, VTT, Lab. Inf. Proc., Helsinki 1988.

73

