
Proc. Eighth International
Conf. on Data Engineering (ICDE-92),
Feb. 3-7, 1992, Tempe, Arizona, USA. 470

Prepare and Commit Certification
for Decentralized Transaction Management
in Rigorous Heterogeneous Multidatabases

Jari Veijalainen
(Veijalainen@tik.vtt.fi)

Antoni Wolski
(Wolski@tik.vtt.fi)

Technical Research Centre of Finland
Laboratory for Information Processing

Lehtisaarentie 2A, 00340 Helsinki, Finland

Abstract

Algorithms for scheduling of distributed transactions in a
heterogeneous multidatabase, in the presence of failures,
are presented. The algorithms of prepare certification
and commit certification protect against serialization
errors called global view distortions and local view dis-
tortions. View serializable overall histories are guaran-
teed in the presence of most typical failures. The as-
sumptions are, among others, that the participating
database systems produce rigorous histories, e.g. by
using the strict two-phase locking policy, and that no
local transaction may update the data accessed by a
global transaction that is in the prepared state. The main
advantage of the method, as compared to other known
solutions, is that it is totally decentralized.

1 Introduction

A multidatabase system can be seen as a system achiev-
ing some degree of interoperability of pre-existing local
database systems (LDBS). For an overview of issues in
multidatabases see e.g. [10] and [7]. In the following, we
shall concentrate on the problem of how atomicity, con-
sistency, isolation and durability, i.e. the ACID proper-
ties [16] of transactions could be preserved in a hetero-
geneous multidatabase system (HMDBS). Especially we
undertake to satisfy the above quality requirements for a
mix of global and local transactions submitted to a multi-
database, in the presence typical failures (transaction
aborts).

It is characteristic for the multidatabase systems that
the local database systems retain their autonomy, espe-
cially the design and execution autonomy (D-autonomy
and E-autonomy) [12, 20]. Resulting from the D-auton-
omy, the LDBS's may be heterogeneous in many
respects. From our point of view, heterogeneity means

that the implementation of the database commands, like
the SQL commands SELECT, UPDATE, DELETE,
INSERT, COMMIT, or ROLLBACK, is different at dif-
ferent LDBS, and not fully known to the constructor of a
HMDBS.

In order to maximally preserve D-autonomy of the
LDBS, the commands available at the local interface (LI)
of a LDBS should not be modified or new commands
added. We only assume that each LDBS offers, at its LI,
a full set of data manipulation (e.g. SQL) commands,
including transaction management commands that to-
gether correspond to the conventional Commit, and
Abort [5].

It seems very difficult to achieve the ACID properties
of global transactions only assuming that each LDBS
allows serializable histories [9].

As was shown in [9], in a failure-free situation, global
histories containing arbitrary local and global transac-
tions are conflict serializable if the LDBS's apply rigor-
ous schedulers. Rigorous means serializable and strict in
the sense of [5], and furthermore such that no data object
may be written until the transaction that previously read
it commits or aborts [9]. Guided by this, we assume the
LDBS's produce rigorous (SRS) local histories. The rig-
orousness is, for example, achieved by the strict two-
phase locking (S2PL) policy [5] whereby all the locks
are kept until the transaction terminates. Since commer-
cial database management systems usually use this pol-
icy, the SRS requirement does not reduce the D-auton-
omy too much.

Unfortunately, we cannot assume that no failures hap-
pen at an LDBS. Preserving D- and E-autonomy of an
LDBS means that it can roll back a single transaction at
any time. We call such an event unilateral abort, without
making difference between single and collective abort
(i.e. site crash). This may happen, in a real system, even
after all the database commands have been executed. The
reasons are various implementation-dependent issues,

471

like the log buffer overflow (INGRES), or unexpected
system bugs.

Globally, a unilateral abort means that an LDBS can
refuse to execute a COMMIT message. This possibility
jeopardizes the atomicity of the global Commit. A solu-
tion is to use the two-phase commit protocol (2PC) [17]
within the HMDBS. If 2PC is used, the prepared state of
the subtransactions has to be implemented. If all the
LDBS's in the system support the 2PC interface and the
prepared state, the stated goals can be easily met. We
direct our efforts towards accommodating traditional,
non-2PC LDBS's in the HMDBS. We believe that such
systems will exist for a long time, in particular systems
based on the older database technology. Consequently,
we do not assume any particular data model in our algo-
rithms.

The main problem is then, how to design a correct
Distributed Transaction Manager (DTM) [15], on top of
D- and E-autonomous LDBS's that do not support the
prepared state. Architecturally, our DTM is based on the
2PC Agent Method we presented earlier [22] wherein the
concepts of an agent, subtransaction resubmission and
subtransaction certification were introduced. In this
paper, we propose new Certifier algorithms that repre-
sent an improvement in the sense of generality and tech-
nical implementability over previously known methods.

Section 2 includes a short presentation of the 2PC
Agent architecture. The transaction model is discussed in
section 3. The new algorithms are presented in sections 4
and 5. In section 6 we review related works. A few notes
on the prototype implementation are given in section 7.
The Certifier algorithms are summarized in the Appen-
dix.

2 The Distributed Transaction Manager
architecture

We present the proposed architecture and the assump-
tions briefly. For a detailed definition, see [22]. The
architecture model is illustrated in Fig. 1. The DTM con-
sists of Coordinators located at the Coordinating Sites
and the 2PC Agent (2PCA) modules located at the
Participating Sites in connection with the Local Trans-
action Managers (LTM). An LTM represents the trans-
actional aspects of an LDBS. There is a single instance
of the 2PCA associated with an LTM.

The 2PC protocol involves a Coordinator and Parti-
cipants. The Participant role is played by the 2PCA mod-
ules in the proposed system. The Coordinator sends
BEGIN, PREPARE and COMMIT (or ROLLBACK)
messages. The Participant may send READY or RE-
FUSE in response to PREPARE, and it acknowledges the
Coordinator's decision messages with COMMIT-ACK or
ROLLBACK-ACK. The states of the Participant are the

idle state (before receiving BEGIN), the active state
(between receiving BEGIN and transmitting READY or
REFUSE) and the prepared state (between transmitting
READY and responding to COMMIT or ROLLBACK).
The data manipulation commands are sent while the
Participants are in the active state. While the Participant
is in the prepared state, the data accessed by the transac-
tion are called bound data.

The 2PC messages travel through a medium called
Network. In order not to have to deal with failures of
purely telecommunications nature, we assume the mes-
sages are nor corrupted, lost or out of order.

Functionally, the Coordinator decomposes global
transactions into global subtransactions, submits them,
command by command, to the Participating Sites (at
most one global subtransaction per site) and returns the
results to the application which performs the necessary
computation. The global subtransactions contain data-
base manipulation commands (e.g. SQL) only. Upon
receiving the global Commit from the application, the
Coordinator starts the standard 2PC distributed commit-
ment protocol.

Coordinator

Coordinating
Site

Participating
Site

Coordinator

(...)

(...)

GI GI

LTM

2PC
Agent

LI

Database

Global
transactions

Global
subtrans-
actions

LTM

2PC
Agent

Database

LTM

2PC
Agent

LI

Database

Local
subtransactions

Elementary
commands

Lo
ca

l
tr

an
sa

ct
io

ns

Global
transactions

Coordinator

EI

2PC

EI

Network

DTM

Fig. 1. An architecture of a multidatabase transaction
management system.

The 2PCA decomposes the global subtransactions into
local subtransactions visible at the local interface (LI).
The LTM further decomposes the local subtransactions
to the elementary Read and Write commands observable
at the elementary interface (EI).

The essential assumptions about the LTM are the fol-
lowing:

DDF Deterministic Decomposition Function. The LTM
transforms the high level database manipulation
commands Oi into a sequence of elementary com-
mands R and W. There is a time-independent
deterministic decomposition function D(Oi,Si)

472

defined over the set of all DML commands Oi

applicable at ith database, and set of concrete1

database states Si of the ith database.

RR Rollback Recovery. If a transaction is aborted, the
LTM restores the concrete before images for all
data items affected by the transaction.

RTT Real Time Transparency. Any two identical
sequences of data manipulation commands exe-
cuted at arbitrary points of time produce the same
results (in terms of database state changes and
command responses), provided the data items
read by them have identical values in either case.

SRS Serializable and Rigorous histories. The LTM
produces rigorous histories.

TW Trustworthiness. After a fixed number of resub-
missions, any global subtransaction that should be
committed can be committed.

UAN Unilateral Abort Notification. The 2PCA is noti-
fied about any unilateral abort that has happened.

A local transaction is a transaction submitted directly to
the LTM. The DTM has no knowledge of local transac-
tions. An important assumption about the local transac-
tions is as follows:

DLU Denied Local Updates. If a data item belongs to
bound data of a global transaction, no local trans-
action may update it, albeit it may read it.

The main principle of the 2PCA method is to maintain
the prepared state within the 2PCA, on behalf of the
LTM. If a global subtransaction being in the prepared
state is unilaterally aborted, the 2PCA submits a new
local subtransaction expressed by the same commands
(e.g. SQL) as the ones originally submitted. This is
called the subtransaction resubmission. Note that the
application specific computation is done by the applica-
tion at the Coordinating Site before the global Commit is
issued, and it is not affected by the resubmission. For
that reason we require that the decomposition of a com-
mand is preserved when the command is resubmitted.

Because the bound data of the subtransaction are
released by the LTM for the time period between the
failure occurs and the commands are resubmitted, this
may cause serializability errors illustrated in the sequel.
To avoid the errors, we propose one or two subtransac-
tion certification steps to be performed by the 2PCA,
whereby the potential concurrency anomalies induced by
the failure are detected.

The 2PCA Certifier we outlined in [22] assumed that
the conflicts detection would be based on the knowledge

1 For concrete/abstract states see [20]

of the commands visible at 2PC interface, presumably by
way of a predicate calculation of some kind. We show
below that the conflict detection can be based solely on
the SRS assumption, and that the algorithm is LTM-
independent and very general. We also address below the
indirect conflicts of the type shown in [11] and [8].

3 The transaction model

Unilateral aborts are the source of all problems addressed
by our method. If no unilateral aborts of prepared local
subtransactions occur, then no anomalies can occur [22].
If the 2PCA detects a unilateral abort, it resubmits all the
commands of the global subtransaction from its log
(Agent log), thus creating a new local subtransaction.

The original and each resubmitted local subtransac-
tion appears as an independent transaction to the LTM
which treats them accordingly. From the global serializ-
ability point of view, however, they belong to the same
transaction.

We use execution trees as modeling instruments, to
elucidate the essential structure of the transactions in this
architecture, similarly to [1] and [4].

The leaf level of the tree consists of indexed R and W
operations, produced by the LTM from the DML
commands, as prescribed by the decomposition function
D (cf. the DDF assumption). Thus, e.g. Rik[Xs] denotes a
Read operation of the ith global transaction and the kth
resubmitted local subtransaction which accesses data
item Xs, at site s. The resubmission index is omitted in
local transactions, e.g. Ri[Xs].

A kth transaction execution is modelled by means of a
sequence of execution trees, Tk(0), Tk(1),... Each individ-
ual tree Tk(j) is a snapshot of a certain phase of the exe-
cution of the kth transaction, and each Tk(j) is contained
in Tk(j+1) modelling the next phase. A new tree is gener-
ated whenever a command becomes completely exe-
cuted. Thus, if an operation is listed in a node of an exe-
cution tree, this indicates that the command has been
completely executed at a given interface and at the inter-
faces below it. The global Commit and Abort operations
are excluded from the above rule. Either of them occurs
in the root node, whenever the Coordinator has recorded,
in a stable storage, the decision to abort (Ak) or to com-
mit (Ck) the global transaction Tk.

The Prepare operation (Psk) occurs in a 2PCA node if
the 2PC Agent has recorded, in its log, the decision to
send the READY message to the Coordinator (i.e. when
the subtransaction Tsk has been moved to the prepared
state).

The transaction T1 in Fig. 2 illustrates a case when a
subtransaction Ta1 became locally aborted (Aa10) then
resubmitted (Ta11) and, eventually, locally committed
(Ca11).

473

Global transaction T1:
Oa1: SELECT C FROM TAB_A WHERE ID='X';
Oa2: UPDATE TAB_A SET C=C+1 WHERE ID='Y';
Ob1: UPDATE TAB_B SET C=C+1 WHERE ID='Z'.

Ta: Pa

C a

T : C1 1

1 1

W10

Ta :11

W11

11

Ca
1

ZbR
10

Tb :O 1
b

10
b

10 C

T b: O1
b

1 Pb
1 C1

b

X
a

Y
a

Y
aY

a
R

10
R

10
X

a
Y

a
R

11
R

11

O1
aOa

2

O1
aOa

2

O1
bO1

a Oa
2

Ta :O1
a

10
aA10Oa

2

Z
b

W10

Global transaction T2:
Oa1: DELETE TAB_A WHERE ID='Y';
Oa2: UPDATE TAB_A SET C=C+1 WHERE ID='X';
Ob1: SELECT C FROM TAB_B WHERE ID='Z'.

GI level

2PC level

LI level

EI level

20

T
a
: O1

a
P

a
2

C20

C22 T
b
: O1

b
P

b

: O1
b

2 2

T b
20

b

b

T : O1 O C
ba
1 22 O

a
2

Oa
2

C
a

T
a

: 20O1
a
O

a
2

W20 X
a

X
a

R20W20 Y
a

C a
2

Z
b

R20

Global transaction T3:
Ob1: SELECT C FROM TAB_B WHERE ID='Z';
Oa1: UPDATE TAB_A SET C=C+1 WHERE ID='Q'.

Local transaction L4:
Oa1: SELECT C FROM TAB_A WHERE ID='Y' OR ID='Q';
Oa2: DELETE TAB_A WHERE ID='U'.

L4 O1:

4 Q
a

O

W4 U
a

R 4 Y
a

R

C
a
4

aa

2

a
C30

C3T
b
:O1

b
P

b

:O1
b

3 3

T
b

30

b

b
C30

C3

QW
30

T :O1P

:O1

3 3

T30

T :O1O C
ba
1 33

aa aa

a

a aa

R R Z
b

30
Q

30

a

Fig. 2. Examples of transactions.

All the transactions shown in Fig. 2 are committed
(global Ci performed) and complete, meaning the local
commit operations Cxik have been performed at all the
sites involved. The data items Xa, Ya, etc. are assumed to
be single concrete table rows at site a.

From an execution tree, we form the corresponding
transaction history H(Tk) which closely corresponds to a
transaction in [5]. It contains all R and W operations at
the leaf level, all A and C operations, and all P opera-
tions, that occur in the tree Tk on higher levels.

The key idea for using the sequence of trees is to set
up a necessary order <H(Tk) between R, W, P, C, and A
operations in H(Tk). The order is equivalent to the order
of the indices (j) of the trees in the sequence Tk(0),
Tk(1),… Tk(j) where the operations in question occur for
the first time. Based on the properties of the different
system components and the 2PC protocol, the following
order holds in any transaction history [21]2:

(1) Pik <H(Tk) Ck <H(Tk) Csk for any indices i , s, k.

Concurrent executions are modelled through linear histo-
ries. Each history, denoted by H, is an element of the
shuffle H(T1)*H(T2)*…*H(Tn) [19], where Tk denotes a
particular tree Tk(j). We denote the total order of H by
<H.

What kind of concurrency anomalies can occur in a
history? Let local history H(i) be a projection of H onto
the operations of the ith site. The conflict (and view)
serializability, as defined in [5], is guaranteed for each
H(i), contained in H, on the basis of the SRS property.

The following history is formed of H(T1) and H(T2)
from Fig. 2:

H1: R10[Xa] R10[Ya] W10[Ya] R10[Zb] W10[Zb] Pa1
Pb1 C1 Aa10 Cb10 W20[Ya] R20[Xa] W20[Xa]
R20[Zb] W20[Zb] Pa2 Pb2 Ca20 Cb20 R11[Xa] Ca11.

Noticing that Ta10 is locally aborted at site a, the history

H1(a):R10[Xa] R10[Ya] W10[Ya] Pa1 Aa10
W20[Ya] R20[Xa] W20[Xa] Pa2 Ca20 R11[Xa] Ca11,

would be locally serializable in the traditional sense of
[5], where the local committed projection Ca(H1) would
contain only the R and W operations following Aa10 in
H1(a). The resubmission of a local subtransaction causes
in it, however, a serious problem, called here the global
view distortion: Ta11 reads Xa in H1(a) from T2, whereas
Ta10 reads Xa from T0 (not shown here). There is no
serial history containing H(T1) and H(T2) where T1
could get two views. Furthermore, the decomposition
D(Ta11) = R11[Xa] differs from D(T110) = R10[Xa]
R10[Ya] W10[Ya] , since Ta20 deleted Ya. This is
impossible in a serial history. It is evident that from the
global point of view, H1 should not be regarded as
"serializable"—even if both local projections are.

What is the "serializability" the DTM should guaran-
tee? Since in a serial history no concurrency anomalies
can occur, we can use the serial history as a yardstick of

2 Theorem 8 in [21]

474

correctness, as usual. We base the definition of the
serializability of a history on its committed projection
C(H) and its equivalence to a serial history, as in [5]. We
only include the globally committed complete transac-
tions into our committed projection. In addition to C(H)
in [5], our C(H) includes all unilaterally aborted local
subtransactions that belong to globally committed
complete transactions. With the C(H) so defined, the
above concurrency anomalies can be captured.

The (conflict and view) equivalence relations and se-
rialization graphs (SG) are then defined in the spirit of
[5]. The definitions are given in [22] and a complete
treatment in [21]. The view equivalence is defined in the
spirit of [5], i.e. only committed writes are taken into
account as final writes. As in [5], SG(H) may be cyclic
but H—still view serializable. Since (even under DLU)
we can not enforce acyclic SG(H), we use the redefined
view serializability as the ultimate correctness criterion
of the 2PCA Certifier.

4 Coping with global view distortion

4.1 Principles of prepare certification

The global view distortion problem means that a resub-
mitted local subtransaction Tikj, j>0, gets another view
and—in the worst case—has another decomposition than
the original local subtransaction Tik0. The reason are
other local subtransactions and—if DLU is not obeyed—
also local transactions that might update the bound data
between Tik0 and Tikj.

How can a 2PCA Certifier act to prohibit the global
view distortion? It can have a direct effect on the global
subtransactions at that site, and an indirect effect on the
other subtransactions through the 2PC protocol ex-
changes with the Coordinator.

At its site the Certifier can perform three things:

a) it can choose the order of a command execution,
b) it can abort a local subtransaction, and
c) it can resubmit commands to create a new local

subtransaction.

Which possibilities should it use? Since only committed
subtransactions can jeopardize the serializability, and
since no global transaction is committed unless it is
moved to the prepared state, the Certifier does not need
to intervene in the execution order before the PREPARE-
message arrives. The idea of the prepare certification is
that the Certifier, having received the PREPARE mes-
sage, ascertains that the subtransaction can be moved to
the prepared state, without a danger that a later commit-
ment of the same global subtransaction violates serializ-
ability among the global subtransactions. If the check
fails, the Certifier aborts the local subtransaction and

issues REFUSE to the Coordinator, otherwise it moves
the global subtransaction to the prepared state and issues
READY to the Coordinator. Thus, the transactions that
might cause global view distortion are filtered out, i.e.
aborted. Let the Certifier enforce the following invariant:

Correctness Invariant (CI):

1) no two global subtransactions with conflicting
local subtransactions can be simultaneously in the
prepared state at a site, and

2) no global subtransaction with a unilaterally
aborted local subtransaction is moved to the pre-
pared state;

We have shown that if CI and DLU are obeyed, then the
global view distortion does not occur [21].

How the conflicting subtransactions could be detect-
ed? Let a subtransaction be alive if all its DML com-
mands are completely executed and it has been neither
locally committed nor aborted. We base the conflict
detection algorithm on the following conjecture:

Conflict Detection Basis: If two local subtransac-
tions are alive at the same time and the LTM pro-
duces locally rigorous histories, then the subtrans-
actions have neither directly nor indirectly conflict-
ing elementary database operations.

To see that the claim holds let us assume there is some
R—W or W—W local conflict between two local sub-
transactions Tikj and Tiht and let them both be alive. Thus
the decomposition of each command has been complete-
ly performed by the LDBS and the retrieved data or
return values of update commands handed over to the
2PC Agent. Due to our modeling principles it holds for
the history H(i): Ok j[Xi] <H O ht[Xi] or Oht[Xi] <H
Okj[Xi] and there is neither local commit nor abort in H
for either subtransaction. Thus, the local history H(i) is
not rigorous. Since we assumed local rigorousness, non-
pending commands and aliveness, the direct conflict
assumption must be false.

Similarly, assuming an indirect conflict through a
local transaction Lo leads either to order: Okj[Xi] <H
Oo1[Xi] <H Oo1[Yi] <H Oht[Yi] or to order Oht[Yi] <H
Oo1[Yi] <H Oo1[Xi] <H Co <H Okj[Xi]. Neither history is
rigorous. Adding the needed local commit Cikj (Ciht)
would contradict with the assumption that Tikj (Tiht) i s
alive. Thus, the indirect conflict assumption is false.❏

4.2 Basic prepare certification based on alive
time intervals

The above Conflict Detection Basis is implemented in
the Certifier by checking, whether the transaction to be
certified was alive at the same time in the past when all

475

of the subtransactions currently in the prepared state
were also alive. The alive check algorithm (see the Ap-
pendix) that checks whether a local subtransaction is
alive, is based on UAN. The Certifier maintains the alive
time intervals for all the subtransactions in the prepared
state at a site. The conflict-freeness as assured by the
following rule:

Alive time intersection rule: if the intersection of
the two alive time intervals is non-empty then there
is no conflict between the corresponding subtrans-
actions.

Moving a new global subtransaction to the prepared state
means algorithmically testing whether the alive time
interval to be inserted has a non-empty intersection with
all other intervals known to the Certifier.

The transaction to be certified has only one alive time
interval known to Certifier, namely the time between the
last performed operation and the time of the checking
moment itself. Which alive time interval of the prepared
transactions should be used during the certification, and
therefore stored? Provided that the overall decomposition
of the jth local subtransaction at the ith site, D(Tikj), is
the same as the decomposition of the first local transac-
tion, D(Tik0), then it does not actually matter. This is
because there are no conflicting operations in two arbi-
trary global subtransactions Tik and Tis, provided there
are no conflicting operations in any of the local subtrans-
actions Tikl and Tisr, l≥0, r ≥ 0. Especially, there will be
no conflicts in the local subtransactions possibly
resubmitted in the future, i.e. assuming stable decom-
position, it is possible to deduce the conflict-freeness in
the future from the information in the past.

Using DLU and induction on the number of local
subtransactions in H(i), CI can be shown to hold, no mat-
ter which existing interval is used during certification
[21]. The easiest way to implement the Certifier is to
simply store the last alive time interval for each global
subtransaction being in the prepared state. As an opti-
mization, several of them might be stored.

After the prepare certification has been performed, the
alive checks are performed at regular intervals. An inter-
val is updated as a result of a successful alive check. If
the check fails then no interval is updated. A new inter-
val is always initiated after the resubmission of all the
commands is complete.

5 Local view distortion

5.1 Illustration of the problem

We are dealing with a local view distortion when local
transactions get non-serializable views caused by unilat-
eral aborts.

Consider a history formed of H(T1), H(T3), and H(L4)
from Fig. 2:

H2: R10[Xa] R10[Ya] W10[Ya] R10[Zb] W10[Zb] Pa1
Pb1 C1 Aa10 Cb10 R30[Zb] R30[Qa] W30[Qa] Pa3
Pb3 C3 Ca30 Cb30 R4[Qa] R4[Ya] W4[Ua] C4
R11[Xa] R11[Ya] W11[Ya] Ca11,

which causes the cycle T1 —> T3 —> L4 —> T1 in
SG(H). Also, H2 is not view equivalent to any serial his-
tory, since L4 reads Qa from T3 and Ya from a hypotheti-
cal initializing transaction T0 (and not T1), however T3
reads Zb from T1. Also state serializability [19] is jeopar-
dized, since L4 writes Ua based on an inconsistent view
on Qa and Ya.

In H2, T3 and T1 a have a direct conflict through
W10[Zb], R30[Zb]. Local view distortion can also occur
in a situation, where the global transactions do not have
direct conflicts, but the local transactions cause them
indirectly. For instance, in

H3: W50[Xa] W50[Ub] W60[Zb] W60[Ya] Pa1 Pa2
Aa50 C2 Pb2Pb1 Ab60 C1 Cb50 R7[Ub]R7[Zb] C7
Ca60 R8[Xa]R8[Ya] W8[Va] C8 W51[Xa] Ca51
Wb61[Z] Cb61.

formed of H(T5), H(T6), H(L7), and H(L8), there are
local transactions L7 and L8 that get non-serializable
views.

The local view distortion is possible in H2 and H3,
because the local commits of the global transactions are
in reversed orders at different sites. In H2, for instance,
Cb10 <H2 Cb30 and Ca30 <H2 Ca11. If the commits were in
the same order, this order would be a global view serial-
ization order. This is because, under SRS, the order of
local commits is the unique local serialization order
between conflicting transactions and it is always a pos-
sible serialization order [9].

Generalizing the observation, we can make use of a
commit order graph of history H, CG(H). Its nodes are
those transactions Tk that have at least one local commit
Cxkj in H. There is an arc from Tk to Ti iff Cxkj <H Cxig
for some x in H.

Evidently, local view distortion is possible in H only
if CG(C(H)) is cyclic; if it is acyclic, then it can be
topologically sorted. Thus, a serial history Hs can be
formed that contains exactly the same transaction histo-
ries H(Tk) as C(H) and has the same order of local
commits as C(H). For a local transaction Lo this means
that exactly the same local commits Cikj precede its
commit Co in both histories. Under rigorousness, Ok0[Xi]
< Cikj < Oo0[Xi] < Co is the only possible order for con-
flicting operations in Hs and C(H). From this it follows,
especially, that a local transaction reads the same data
items from the same local (sub)transactions in both his-
tories. Also the final writes are the same. Hs and C(H)

476

are thus view equivalent provided no global view distor-
tion does occur. This requires CI, SRS and DLU to hold
[21]3. Based on the acyclicity of CG(C(H)), the view
equivalence can be shown to hold for each prefix H' of
H. Thus, as a whole, H is view serializable.

5.2 Commit certification

To prohibit the local view distortion, it is sufficient that
the commit order graph is kept acyclic. The Certifiers
can achieve this by issuing the commit operations for the
local subtransactions in a globally unique total order.

Which order should be chosen? A simple possibility is
to guarantee that the transaction identifiers are picked up
from a totally ordered set used by each Certifier. This
approach was discussed e.g. in [13]. This would be quite
restrictive, because it would require all global transac-
tions to be serialized in the same order even if they could
not have caused any problems. Another deficiency is
that, if the local systems serialized the transactions in an
order that differs from the predefined order, a deadlock
might occur among Coordinators, or global or local
transactions might become aborted in vain.

Evidently, the best choice would be to use a locally
determined necessary serialization order, because it min-
imizes the unnecessary aborts. How does a Certifier find
this order? What guarantees that all Certifiers find the
same order?

Let us assume that the local serialization order of two
global subtransactions Tij and Tik has been determined
by the LTM before one of them is moved to the prepared
state. In this case the prepare operations of Tij and Tik are
in the same order at each site they have subtransactions
at. That is, Psk <H Psj or Psj <H Psk for any index s4, and
additionally, their order is the serialization order.

To see this, let Tik be moving from the active to the
prepared state and Tik0 thus alive. By assumption, it con-
flicts directly or indirectly with Tij. Let the operations at
the end of the conflict chain be Ojy[Yi] and Ok0[Xi].
Assume Ok0[Xi] <H Ojy[Yi]. Under rigorousness, Xi

must have been committed in Tik0 , which is, by
inequality (1), in contradiction with our assumption that
it is about to be prepared. Thus, Ojy[Yi] <H Ok0[Xi] <H
Pik must hold. Again, by rigorousness and by the exis-
tence of a chain of locally conflicting operations between
Ojy[Yi] and Ok0[Xi], we can deduce that there are also
local commits between each conflicting pair. Using (1)

3 Th. 19. ibid.
4 Under CI and DLU, if a pair of local subtransactions Tiks and Tijy

conflict, then the original ones must also conflict, because their
decomposition cannot differ from each other. Note, that under
DLU, the local transactions like Lo, can also update data read and
updated by global transactions, while the data are not bound.

and CI we thus get Oj0[Yi] <H Pij <H Cijy <H Ok0[Xi] <H
Pik if y=0, or Pij <H Aij0 <H Ojy[Yi] <H Cijy <H Ok0[Xi]
<H Pik , if y>0. Reapplying inequality (1) holding for
H(Tk) and H(Tj), we get pgj <H Cj <H Cijy <H Ok0[Xi] <H
Psk, i.e. Pgj <H Psk for any site indices g and s.❏

The observation could be used operationally by
recording, at each site, the order in which subtransaction
entered the prepared state. During the commit certifica-
tion, this order would again be kept. This approach
would be enough to guarantee acyclicity of CG(H) for
local view distortions as in H2. Unfortunately, this does
not work, if, as in H3, the original local subtransactions
do not conflict directly or indirectly. Therefore, the pre-
pare operations might occur in arbitrary orders at site a
and b. Using the order of the prepare operations inde-
pendently by the Certifiers might lead exactly to a cyclic
CG(H), which we tried to avoid.

One solution is to use a globally determined order that
is equivalent with the unique serialization order, if it
exists. For this purpose a serial number of a transaction
Tj, SN(j), is used. SN(j) is unique and picked from a
totally ordered set. The latter requirement can then be
formulated:

(2) If Tx precedes Ty in a local serialization order,
then SN(x) < SN(y) holds.

To fulfil (2), numbers SN(x) and SN(y) and must be
determined during the execution. It is possible to do it
when all original DML commands have been executed
and the conflicts have been detected by the LTMs, i.e.
when the application submits the Commit to the Coordi-
nator. At this moment, the Coordinator gives a globally
unique serial number to the transaction. This number is
transmitted with the PREPARE messages to each
participating site. Each Certifier stores it. When the
COMMIT message later arrives, the Certifier enforces
the local commits in the order of the serial numbers
known to it. The algorithm is presented in the Appendix.

Let also the generation of the serial number be
denoted by SN(). Assuming that a serial number increas-
es with the real time, the condition above becomes
fulfilled: the inequality Oj0[Yi] <H SN(j) <H PsSN(j) <H
CiSN(j)y <H Ok0[..] <H SN(k) <H P sSN(k) <H Ck <H
CsSN(k)g holds for any site indices s, provided there is a
direct or indirect conflict assumed above at site i.

How the serial number could be generated? Basically,
using any suitable technique like a centralized counter or
a logical distributed clock. However, these are cumber-
some techniques in an autonomous environment. It is
appealing to use real time site clocks, expanded with the
unique site identifier, for this purpose, too. The amount
of the time drift among the clocks has no influence on
the correctness of the Certifier. The drift may cause
unnecessary aborts, only.

477

It seems, that if the amount of the drift is kept within
the time of four message exchanges over the network,
the solution is as good as an ideally synchronized one.
This is for further study.

5.3 Prepare certification extension

What then guarantees that all Certifiers find the same
order? Unfortunately, this is not guaranteed for those
global transactions that do not conflict directly, without
additional measures. The reason is that the COMMIT
message of Tk could overtake the PREPARE message of
Tj at site s, even if Tj reached the prepared state at site i
earlier than Tk. Thus, the order

SN(j) PiSN(j) SN(k) PiSN(k) PsSN(k) CsSN(k) PsSN(j)
CiSN(j) CiSN(k) CsSN(j)

is possible in Hx – and CG(Hx) is clearly cyclic.
To avoid this problem, the prepare certification must

be extended to abort such transactions that might cause
cycles in CG(H). This is done by recording the so-far
biggest serial number of a committed subtransaction at
each Certifier. If a PREPARE message arrives with a
smaller number, the subtransaction, eg. PsSN(j) above,
will be aborted during the prepare certification.

6 Related work

We shall confine the discussion to works striving for
serializability in the presence of failures. Researchers
have made different assumptions about the LTM and the
nature of failures. Both in [2] and [3] a simulated pre-
pared state and a resubmission was proposed to deal with
some failures, but the unilateral aborts in the prepared
state were not included. The idea of resubmission may be
found also in [14] to serve the needs of site recovery but
not subtransaction recovery. In [18] various schemes are
proposed, some of them guaranteeing serializability and
some of them not, yet a special global scheduler (e.g.
lock-based) has to be used to maintain serializability.
Neither local transactions are allowed in the system nor
unilateral aborts are taken care of.

A notable progress was made in [8] proposing a
method we shall call the Commit Graph method (CGM).
The following is a detailed comparison of the 2PCA
Certifier method (2CM in the sequel) with CGM. The
methods share a similar objective to guarantee the global
serializability in the presence of failures of similar types,
but the proposed solutions are significantly different.

Architecture

The DTM of CGM uses a centralized scheduler while the
scheduling in the 2CM is decentralized. There is a dedi-

cated 2PCA for each LTM in 2CM. On the other hand,
the agents (called servers) of the CGM do not share a
common state at a site—they are instantiated for each
global subtransaction separately. Both methods allow for
unilateral aborts and they do the global subtransaction
recovery by resubmitting the database commands be-
longing to the transactions aborted in the wake of a fail-
ure. The 2PC protocol is used in both methods. The
assumptions about the LTMs are also similar, however
with the difference that 2CM allows for any implementa-
tion resulting in local SRS histories, as compared to a
less general assumption of the S2PL policy, in CGM.

Dealing with the global view distortions

CGM assumes a global S2PL lock manager is used by
the DTM. This, together with the partitioning of data,
protects against the global view distortion. However, it is
not obvious how the global lock manager can be imple-
mented in a contemporary environment unless some
coarse granularity (e.g. site, database or table) locking is
applied. Also, unless the granularity level is at least
database, the triggers would not be allowed with this
solution.

In 2CM, the basic prepare certification protects
against the global view distortions.

Restrictions imposed on the local transactions

The local transactions are restricted by the DLU assump-
tion in 2CM. In CGM, the restriction is imposed in a less
general way by partitioning the data items into the
locally updateable set and the globally updateable set.
As concerns reads, an additional restriction is that those
global transactions that update data items, are not
allowed to read the locally updateable set. Both
approaches have seemingly similar practical conse-
quences of which the most important is that the results of
the local transactions are not readily available to global
transactions.

Dealing with the local view distortions

The commit graph of CGM is instrumental in protecting
against the local view distortions. It is an undirected
graph whose nodes are global transactions and Participat-
ing Sites. An edge connects a transaction node Tj with a
site node Si iff the global subtransaction Tij is in the pre-
pared state. The loop in the graph signals a potential con-
flict among global and local transactions. Thus the
granularity of the potential conflict detection is that of a
site.

In 2CM, the commit certification and the extension of
the prepare certification protect against the local view
distortions.

478

Resolving deadlocks

In 2CM, the timeout based deadlock resolution is
assumed to be used. On the other hand, CGM employs
an elaborate combination of three graphs, enabling to de-
tect potential deadlock situations including all real global
deadlocks, also the ones involving local transactions.

Restrictiveness

It is difficult to formally compare the restrictiveness of
the methods. If we assume that neither checking the
order of the arriving PREPARE messages, nor too long a
time between alive time checks ever cause aborts, 2CM
is less restrictive than CGM: in a failure-free situation it
does not abort any transactions. Thus, there are histories
accepted by the 2PCA Certifier but rejected by a CGM
based DTM because of the site-level granularity in the
commit graph. If failures occur, the comparisons become
more complicated and are for further study. The effective
performance of 2CM is also for further study.

7 Notes on the implementation of the
Certifier

The Certifier algorithms have been implemented in the
HERMES prototype system at the Laboratory for
Information Processing of the Technical Research Centre
of Finland (VTT). The system incorporates two commer-
cial database products: the SQL Server (Sybase Inc.) and
INGRES (Ask Computer Systems, Inc.) A commercial
implementation of the 2PC protocol (by Sybase Inc.) is
also used. The 2PCA Certifier is implemented on a
VAX/VMS site in connection with the INGRES DBMS,
using the single-phase transaction interface of INGRES.

8 Conclusions

We have presented a complete Distributed Transaction
Manager, applicable in an environment of the design and
execution autonomous database systems. Its key compo-
nent is the 2PCA Certifier. The presented Certifier algo-
rithms allow to take advantage of e.g. the dynamic, strict
two-phase locking offered by the contemporary DBMSs.
They also allow for recovery from unilateral aborts. The
basic prepare certification protects against the serializa-
tion errors among global transactions, resulting from
unilateral aborts. The commit certification and the pre-
pare certification extension assure that local transactions
also get a correct view of the global data in presence of
failures.

A DTM based on the 2PCA Certifier does not require
any centralized component in the architecture of a multi-
database transaction system. It is based on simple algo-

rithms that can be replicated onto as many sites as
needed. The interactions between the sites in HDBMS is
carried out by way of the 2PC protocol.

Bibliography

[1] F. Bancihlon, W. Kim and H.F. Korth., "A Model
of CAD Transactions", Proc. 11th VLDB Conf.
(Stockholm, August 1985), pp. 35-33.

[2] Ken Barker, "Transaction Management on
Multidatabase Systems", TR 90-23 (Ph.D. thesis),
August 1990, Dept . of Computing Science, The
Univ. of Alberta, Edmonton, Alberta, Canada.

[3] K. Barker and M. T. Özsu, "Reliable Transaction
Execution in Multidatabase Systems", Proc. First
International Workshop on Interoperability in
Multidatabase Systems (IMS'91, Kyoto, Japan,
April 7-9, 1991), pp. 344-347.

[4] C. Beeri, P. A. Bernstein and N. Goodman, "A
Model for Concurrency in Nested Transactions
Systems", Journal of ACM, Vol. 36, No. 2 (April
1989), pp. 230-269.

[5] P. A. Bernstein, V. Hadzilacos and N. Goodman,
"Concurrency control and recovery in database
systems", Addison-Wesley Publ. Comp., 1987.

[6] Y. Breitbart and A. Silberschatz, "Multidatabase
Update Issues", Proc. of 1988 ACM SIGMOD
Conf. (June 1988), pp. 135 - 142.

[7] Y. Breitbart, "Multidatabase interoperability",
SIGMOD Record, Vol. 19, No. 3 (September
1990), pp. 52 - 60.

[8] Y. Breitbart, A. Silberschatz and G. R. Thompson,
"Reliable Transaction Management in a Multidata-
base System", Proc. 1990 ACM SIGMOD Conf.
(Atlantic City, 23 - 25 May), pp. 215 - 224.

[9] Y. Breitbart, D. Georgakopoulos, M. Rusin-
kiewicz, A. Silberschatz, "On Rigorous Transac-
tion Scheduling", IEEE Trans. on Software Eng.,
Vol. 17, No. 9 (Sept. 1991), pp. 954 - 960.

[10] Special Issue on Heterogeneous Databases, ACM
Comp. Surveys, Vol. 22, No. 3. (September 1990).

[11] W. Du and A. K. Elmagarmid, "Quasi Serializabi-
lity: a Correctness Criterion for Global Concur-
rency Control in InterBase", Proc. 15th VLDB
Conf., (Amsterdam, August, 1989), pp. 347 - 355.

[12] F. Eliassen and J. Veijalainen, "Language support
for Multi-database Transactions in a Cooperative,
Autonomous Environment", Proc. TENCON 87
(Seoul, 25-28 August , 1987), pp. 277 - 281.

[13] A. K. Elmagarmid and W. Du, "A Paradigm for
Concurrency Control in Heterogeneous Distributed
Database Systems", Proc. IEEE Int. Conf. on Data
Eng., Los Angeles, February 1990.

[14] D. Georgakopoulos, "Multidatabase Recoverability
and Recovery", Proc. First Internat. Workshop on
Interoperability in Multidatabase Systems (IMS'91,
Kyoto, April 7-9, 1991), pp. 348-355.

[15] V. Gligor and R. Popescu-Zeletin, "Transaction
Management in Distributed Heterogeneous Data-

479

base Management Systems", Information Systems,
Vol. 11, No. 4 (1986), pp. 287 - 297.

[16] T. Härder and A. Reuter, "Principles of Trans-
action-Oriented Database Recovery", ACM Comp.
Surveys, Vol. 15. No. 4 (December 1983).

[17] ISO/IEC 9804: 1990. "Information technology—
Open Systems Interconnection—Service definition
for the Commitment, Concurrency and Recovery
service element", International standard, ISO/IEC,
1990.

[18] P. Muth and T. Rakow, "Atomic Commitment for
Integrated Database Systems", Proc. 7th Conf.
Data Eng. (Kobe, 8-12 April, 1991), pp. 296-304.

[19] C. H. Papadimitriou, "The Theory of Database
Concurrency Control", Computer Science Press,
1986.

[20] J. Veijalainen, "Transaction Concepts in Auton-
omous Database Environments", GMD-Bericht Nr.
183 (Ph.D. thesis), Oldenbourg Verlag, 1990 .

[21] J. Veijalainen and A. Wolski, "The 2PC Agent
Method and its Correctness", Research Notes no.
1192, Technical Research Centre of Finland, 1990.

[22] Antoni Wolski and Jari Veijalainen, "2PC Agent
Method: Achieving Serializability in Presence of
Failures in a Heterogeneous Multidatabase", Proc.
IEEE PARBASE-90 Conf. (Miami Beach, 7-9
March, 1990) pp. 321 - 330.

Appendix. The algorithms of the 2PCA
Certifier

The following are the essential algorithms of the certi-
fier. The algorithms are depicted as state transitions
within the states of the Participant in the 2PC protocol.

A. Alive check
when in prepared state
upon alive check interval timeout
{

check whether the transaction is alive;
If alive then // there has been no failure
{ update the end of the alive time interval;

return to prepared state;
}
else // unilaterally aborted.
{

resubmit commands from the Agent log;
set beginning of the new alive time interval;
return to prepared state ;

}
}

B. Extended prepare certification
when in active state
upon receiving the PREPARE message from the
Coordinator
{ // extended prepare certification.

check whether there is an "older" subtransaction
already in the committed state;

if true then // PREPARE out of order—certification
extension failed, abort the global transaction.
{ respond REFUSE to the Coordinator;

return to idle state ;
}
else //certification extension OK
{ // basic prepare certification.

check whether the alive interval of this
transaction has a non-empty intersection with
each of the alive intervals of the subtransactions
being in the prepared state at this 2PCA;
if true then //basic prepare certification OK
{

insert the transaction into the alive
interval table ;
check whether the transaction is
alive;
If alive then // no failure;
{

force write the prepare record in the
Agent log;
READY to the Coordinator;
set the alive check interval
timeout;
return to prepared state;

}
else //unilaterally aborted.
{

REFUSE to the Coordinator;
remove the transaction from the
alive interval table;
return to idle state ;

}
}
else //prepare certification failed: abort.

REFUSE to the Coordinator;
return to idle state ;

}
}

C. Commit certification
when in prepared state
upon receiving the COMMIT message from the Coordinator
or
upon commit certification retry time out
{

check whether all the subtransactions that are in the
alive interval table have a bigger serial number than the
transaction to be certified;
if true then //commit certification OK
{

write the commit record to the Agent log;
commit the local subtransaction and the commit
record in the Agent log;
COMMIT-ACK to the Coordinator;
delete the transaction from the alive interval
table;
return to idle state ;

}
else //commit certification failed
{

set the commit certification retry timeout to
retry the commit certification at a later time;
return to prepared state ;

}
}

