
Proc. Third International Workshop on Research Issues on Data Engineering:
Interoperability in Multidatabase Systems (RIDE-IMS'93), Vienna, Austria,
April 19-20, 1993, pp. 51-54.

Retrospection on the HERMES project:
Implementation of a Heterogeneous
Transaction Management System

Aija Palomäki Antoni Wolski Jari Veijalainen Jari Jokiniemi

Technical Research Centre of Finland (VTT)
Laboratory for Information Processing

Lehtisaarentie 2A, 00340 Helsinki, Finland

Internet: <first name>.<last name>@vtt.fi

Abstract

The goal of the HERMES project was to conceive means
to integrate existing heterogeneous database products in a
transaction management system. The project produced the
2PC Agent method based on the 2PC protocol. The
method is based on simulation of the prepared state at par-
ticipating sites and it guarantees serializable executions in
the presence of site and transaction failures. A restriction
on the behaviour of local transactions is imposed: the
(necessary) condition called DLRP has to be maintained,
meaning no local transaction should update the data read
by a subtransaction being in the prepared state.

The project experienced a diminishing interest in the
part of the industrial supporters, and the prototype soft-
ware produced was not utilized. Consequently, a question
of relevance of the original goals arises.

1: Introduction

The HERMES project was carried out at the Laboratory
for Information Processing of the Technical Research
Centre of Finland (VTT) during the years 1988—1991.
The project was 70 % government-funded, with the rest
of the funding provided by the industrial partners partici-
pating in the project. The industrial partners — 10 of them
altogether — included banks, insurance companies,
telecommunications companies, system houses and a ma-
chinery manufacturer. The project partners were attracted
by the possibility to integrate their dispersed transaction
processing systems which were confined to product-spe-
cific environments.

We set our goal at no less but to achieve serializable
executions of transactions spanning over a set of hetero-
geneous database products, in the presence of typical fail-

ures. We also strove for a minimally restrictive solution,
in the sense of performance and also, local autonomy
[16]. We discuss the system assumptions, failure types
and the objectives in a more detail in Section 2.

The approach known as the 2PC Agent method was
produced and refined during 1989—1991. The final ver-
sion of the prototype system HERMES became opera-
tional in the Spring of 1991. The major results of the
work are summarized in Section 3. The ramifications of
the results are discussed in Section 4.

2: Premises and objectives

The HERMES system comprises, physically, of the
Participating Sites and Coordinating Sites (Fig.1).

Coordinating
Sites

Participating
Sites

Coordinator

(...)

DBMS

2PC
Agent

2PC
Agent

2PC
Agent

Coordinator
DTM

Global
transaction
programs

Global
transaction
programs

DBMS DBMS

Fig. 1. Software components of a hetero-
geneous transaction management system.

The goal was to define the Distributed Transaction
Manager (DTM), in the sense of [13], having components
at all sites.

2

Each DBMS (database management system) represents
a database product. The products may be heterogeneous.
The typical characteristics of the contemporary database
products are:

• the only way to interact with the DBMS is by using the
DML language supported by the product, in our
prototype — the SQL;

• they have the one-phase commit interface, i.e. the
COMMIT and ROLLBACK commands are provided,
but the PREPARE command is not;

• they apply rigorous [12] schedulers exemplified by a
typical strict two-phase lock (S2PL) manager [4];

• their behaviour cannot be modified.

The two-phase commit protocol (2PC) [14] is used within
the DTM. The DTM components at the Coordinating Sites
execute standard 2PC coordinator algorithms. As the
DBMSs necessarily do not have the prepared state capa-
bility, the prepared state has to be simulated within the
DTM. This is done in the 2PC Agents.

At the Coordinating Sites, the global transaction pro-
grams interact with the DTM using the SQL language. The
DTM decomposes the global transactions into subtransac-
tions and passes them to the appropriate Participating
Sites. In addition to these subtransactions, there are local
transactions originated by programs interacting directly
with the DBMSs. The DTM has no knowledge of the local
transactions.

The objective is to enforce (view) serializable [4] over-
all histories (i.e. executions of global and local transac-
tions) in the presence of failures. The failures include:

• Participating Site failures. This involves a total loss of
the volatile memory and aborting all the active transac-
tions at a site. Similar are the failures of the transaction
management software (DTM, DBMS).

• Transaction failure. A unilateral abort of a transaction,
by the DBMS.

The latter failure type has not been dealt with much in the
literature. However, in many database products, a trans-
action is allowed to be aborted by the system at any
time—also when no database command is being exe-
cuted—as long as the transaction has not been committed.
The reasons for this behaviour are, usually, implementa-
tion-dependent internal resource conflicts, e.g. a circular
buffer overflow or an internal table space overflow.

Some researchers question the existence of such a be-
haviour. On the other hand, the DBMS implementers and
users confirm the existence of such transaction failures.
We were also able to demonstrate the failure in Ingres v.
6.2 by having one transaction waiting for commit and then
overflowing the log buffer with extremely long transac-

tions. Eventually, the system aborted the waiting transac-
tion.

The transaction failure is difficult to deal with because
it may happen to a subtransaction being in the prepared
state, from the DTM point of view. Our solution to this
problem is presented in the next section.

3: Results and related work

When we started our work, only few papers were pub-
lished in the area. In the opening work of [13], some main
problems were identified together with the general DTM
architecture plus some elementary solutions. In [1], the
use of a log and "retrying failed requests" was proposed.
This meant, in fact, the re-execution of transaction pro-
grams.

In our approach, the DBMSs are autonomous and the
only knowledge the DTM has about the global transaction
programs is their SQL commands. Therefore, the DTM
can not affect the course of the global transaction execu-
tion by any way other than by passing, delaying, rejecting
or resubmitting the SQL commands.

During normal operation the DTM only passes the
commands to the DBMSs. In case of a subtransaction
failure, DTM simply rejects the rest of the subtransac-
tions' SQL commands if the subtransaction has not
reached the prepared state yet. Otherwise, the prepared
state has to be recovered. We chose to do that by resub-
mitting the SQL commands of failed subtransactions [19].
For this purpose we decided to store the SQL commands
in a special log. We also used the idea found in [9],
whereby, implementing the log in a local database, the
insertion of the commit record into the log may be
committed atomically, together with the subtransaction
that caused the insertion. The resubmission concept and
the simulation of the prepared state were also inde-
pendently presented in other works dealing with site re-
covery, e.g. [2, 3, 7, 10 and 11].

Other works at that time dealt with heterogeneous con-
currency control issues in failure-free environments.
Contrary to that, we decided to utilize a possible homoge-
neity of concurrency control. In [6], it was shown that, in
a system of distributed S2PL schedulers, conflict serializ-
able executions are produced for an arbitrary set of local
and global transactions. The result was generalized, inde-
pendently in [19] and [10], for the class of rigorous sche-
dulers.

The main problem was, however, how to deal with
failures jeopardizing the serializability. We understood
that if we wanted to guard correctness by rejecting the
global transactions possibly offending the serializability,
this was to be done before the subtransactions reached the
prepared state. We decided to look for potential conflicts
at the time the PREPARE command of a subtransaction

3

was processed, and called this step the prepare certifica-
tion.. The alive time interval based prepare certification
[20] is done by checking the time intervals subtransactions
have been alive (i.e. not committed or aborted) at a
Participating Site. A failure and a subsequent resubmis-
sion creates a gap in this time interval. And, if a subtrans-
action being certified has been alive during that time gap,
there is a possibility of a conflict between these two sub-
transactions. If such an overlap is detected, the prepare
certification fails and the PREPARE command is rejected.

In [20], we added a step of commit certification to
avoid serializability errors caused by indirect conflicts in-
volving local transactions. The role of the commit certifi-
cation was to force the commits into certain correctness-
ensuring order (thus achieving the characteristics known
also as the strong recoverability [5] or the commit order-
ing [15]). A new set of certification algorithms was pre-
sented in [17]. The proofs of correctness are in [18]. A
special tree-based transaction model was developed to
facilitate the proofs.

A significant condition called Denied Local updates for
Reread data in the Prepared state (DLRP) was discovered.
DLRP means that local transactions are not allowed to up-
date data read by subtransactions being in the simulated
prepared state. An important result, for all the resubmis-
sion-based approaches, is the following theorem:

Theorem. Necessary condition for conflict serializability
(the paraphrased Th. 8 of [18]).

If 1) the overall history is conflict serializable,
2) the local histories are rigorous and
3) no two subtransactions being in the prepared

state have conflicting operations,

then the DLRP holds at all sites.

If the DLRP is not maintained, and a subtransaction fails,
a local transaction may update an item just read by the
failed subtransaction and commit, causing an irrevocable
serializability error. For examples of the serializability er-
rors, see e.g. [7] and [17]. Note that subtransaction re-
covery is performed by resubmission of the SQL com-
mands, with no respect given to the fact that the database
state might have changed in the meantime.

In reality, enforcing DLRP is difficult. One solution is
to submit also all the local transactions to the DTM. But,
this violates the local design autonomy [8], because local
transaction programs should be re-programmed. Local
data could be divided into distinct locally and globally up-
dateable sets, as proposed in [7], and the transaction pro-
grams could be designed accordingly. Instead of the data
space, one could divide the data usage time, using admin-
istrative or technical means, into distinct local and global
update usage time intervals. Or, a certification function
call could be added to each local transaction program,

which however, violates the local design autonomy as
well. In other words, in order to maintain the overall se-
rializability, the local autonomy has to be restricted in one
way or another.

At the time of writing, the only known competitive
method dealing with transaction failures, is the one of [7].
The comparison of the two approaches shows that they
both make use of similar assumptions about the environ-
ment, but the solutions are quite different. The approach
of [7] utilizes a centralized scheduler, while the 2PCA
method is fully distributed.

The core of the method in [7] is the commit graph. It is
an undirected graph whose nodes are global transactions
and Participating Sites. An edge connects a transaction
node Tj with a site node Si iff the global subtransaction Tij
is in the prepared state. The loop in the graph signals a
potential conflict among global and local transactions.
Thus, the granularity of the potential conflict detection
resolution is that of a site. In the 2PC Agent method, the
same goal is achieved by means of the prepare and commit
certification performed at Participating Sites. The resulting
restrictiveness of the methods may vary vastly. It may be
shown that, with certain assumptions, the 2PC Agent al-
gorithms do not abort any transactions in a failure-free sit-
uations, but the corresponding histories are rejected by the
method of [7] because of the site-level granularity in the
commit graph. However, an exact restrictiveness assess-
ment requires further study.

On the other hand, the method of [7] is deadlock-free,
while the 2PC Agent method requires an additional dead-
lock detection mechanism (like timeout).

4: Industrial feedback

During the HERMES project, the interest of our industrial
partners in the project was declining over time. In the end,
it turned out that there was not anyone eager to pilot test
the approach in a real environment, not to speak of mak-
ing it a product. So, obviously we got something wrong
in the requirements analysis phase.

Actually, our partners rarely used ACID transactions,
even in their centralized database systems. In heavy-load
systems, most of the ACID characteristics, namely serial-
izability, atomicity and isolation were often compromised
in favour of performance. The long-term correctness and
failure resilience of the application systems relied on
guarding the semantic correctness of transactions within
the application code. This meant, e.g. utilizing commuta-
tivity of operations at the application level for concurrency
control, and compensation programs for recovery pur-
poses (especially in banks). A proliferation of application-
level logs and various consistency checking programs un-
derlined this approach.

4

We also got the impression that, after all, our partners
did not feel secure about distributing transactions across
physical system boundaries. Instead other interoperability
means (e.g. data copying) were substituted. Furthermore,
the enterprises did not seem to want to use commercially
unsupported systems software; equally the role of in-
house development in this area was diminishing.

5: Conclusions

The HERMES project established a way to integrate exist-
ing heterogeneous database products in a transaction man-
agement system. It produced the 2PC Agent method
which guarantees serializable executions of global trans-
actions in the presence of site and transaction failures but
imposes a restriction on the scheduling of local transac-
tions. The experience of the project indicated that seman-
tic-based solutions to transaction management are worth
pursuing, at the DTM level, in order to preserve the local
autonomy. On the other hand, if the autonomy require-
ments can be relaxed, serializability-based approaches are
more feasible. The appeal of the serializability lies in the
unbeatable simplicity of the concept, which leads to effi-
cient and reliable application programming.

References

[1] R. Alonso, H. Garcia-Molina and K. Salem, "Con-
currency Control and Recovery for Global Proce-
dures in Federated Database Systems", Quarterly
Bull. IEEE Tech. Comm. on Database Engineering,
Vol. 10, No. 3 (1987), pp. 5 - 11.

[2] K. Barker, "Transaction Management on Multidata-
base Systems", TR 90-23 (Ph.D. thesis), August
1990, Dept . of Computing Science, The Univ. of
Alberta, Edmonton, Alberta, Canada.

[3] K. Barker and M.T. Özsu, "Reliable Transaction
Execution in Multidatabase Systems", Proc. First
Internat.Workshop on Interoperability in Multidata-
base Systems (Kyoto, April 7-9, 1991), pp. 344-
347.

[4] P.A. Bernstein, V. Hadzilacos and N. Goodman,
"Concurrency control and recovery in database sys-
tems", Addison-Wesley Publ. Comp., 1987.

[5] Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz
and A. Silberschatz, "On Rigorous Transaction
Scheduling", IEEE Trans. on Software Eng., Vol.
17, No. 9 (1991), pp. 954 - 960.

[6] Y. Breitbart and A. Silberschatz, "Multidatabase
Systems with a Decentralized Concurrency Control
Scheme", IEEE Distributed Processing Tech. Com-
m. Newsletter, vol. 10, no. 2 (1988), pp. 35-41.

[7] Y. Breitbart, A. Silberschatz and G.R. Thompson,
"Reliable Transaction Management in a Multidata-
base System", Proc. 1990 ACM SIGMOD Conf.
(Atlantic City, 23 - 25 May, 1990), pp. 215 - 224.

[8] F. Eliassen and J. Veijalainen, "Language support
for Multi-database Transactions in a Cooperative,
Autonomous Environment", Proc. TENCON 87
(Seoul, 25-28 August, 1987), pp. 277 - 281.

[9] H. Garcia-Molina and K. Salem, "Sagas", Proc.
1987 ACM SIGMOD Conf. (San Francisco, 27 -
29 May), pp. 249 - 251.

[10] D. Georgakopoulos, "Transaction Management in
Multidatabase Systems" (Ph.D. thesis), December
1990, Dept. of Computer Science, University of
Houston, Houston, Texas.

[11] D. Georgakopoulos, "Multidatabase Recoverability
and Recovery", Proc. First Internat. Workshop on
Interoperability in Multidatabase Systems (Kyoto,
April 7-9, 1991), pp. 348-355.

[12] D. Georgakopoulos, M. Rusinkiewicz and A.
Sheth, "On Serializability of Multidatabase Transac-
tions through Forced Local Conflict", Proc. 7th
Conf. Data Engineering (Kobe, 8-12 April, 1991),
pp. 314-323.

[13] V. Gligor and R. Popescu-Zeletin, "Transaction
Management in Distributed Heterogeneous Database
Management Systems", Information Systems, Vol.
11, No. 4 (1986), pp. 287 - 297.

[14] ISO/IEC 9804: 1990, "Information technology—
Open Systems Interconnection—Service definition
for the Commitment, Concurrency and Recovery
service element", Internat. standard, ISO/IEC,
Geneva 1990.

[15] Y. Raz, "The principle of Commit Ordering, or
Guaranteeing Serializability in a Heterogeneous En-
vironment of Multiple Autonomous Resource-Man-
agers", Proc. 18th VLDB Conf. (Vancouver, Au-
gust 23-27, 1992).

[16] J.Veijalainen, "Transaction Concepts in Auton-
omous Database Environments", GMD-Bericht Nr.
183 (Ph.D. thesis), R. Oldenbourg Verlag, Munich,
Germany 1990 .

[17] J. Veijalainen and A. Wolski, "Prepare and Commit
Certification for Decentralized Transaction Manage-
ment in Rigorous Heterogeneous Multidatabases",
Proc. Eighth Internat. Conf. on Data Engineering
(Tempe, Feb. 3-7, 1992), pp. 470-479.

[18] J. Veijalainen and A. Wolski, "The 2PCA Agent
Method for Transaction Management in Heteroge-
neous Multidatabases, and its Correctness", Re-
search Report No. J-10, June 1992, Helsinki, VTT,
Laboratory for Information Processing.

[19] A. Wolski and J. Veijalainen, "2PC Agent Method:
Achieving Serializability in Presence of Failures in a
Heterogeneous Multidatabase", Proc. IEEE
PARBASE-90 Conf. (Miami Beach, 7-9 March,
1990) pp. 321 - 330.

[20] A. Wolski and J. Veijalainen, "2PC Agent Method:
Achieving Serializability in Presence of Failures in a
Heterogeneous Multidatabase", In: Rishe, N.,
Navathe S., Tal, D. (eds.). Databases: Theory,
Design and Applications. IEEE Computer Society
Press, 1991, pp. 268-287.

