
Fuzzy Triggers: Incorporating Imprecise Reasoning
into Active Databases

Antoni Wolski Tarik Bouaziz†

Technical Research Centre of Finland (VTT)
VTT Information Technology

P.O. Box 1201, FIN-02044 VTT, Finland
{Antoni.Wolski, Tarik.Bouaziz}@vtt.fi
http://www.vtt.fi/tte/projects/tempo/

Abstract

Traditional Event-Condition-Action triggers (active data-
base rules) include a Boolean predicate as a trigger condi-
tion. We propose fuzzy triggers whereby fuzzy inference is
utilized in the condition evaluation. This way, approxi-
mate reasoning may be integrated with a traditional crisp
database. The new approach paves the way for intuitive
expression of application semantics of imprecise nature, in
database-bound applications. Two fuzzy triggers models are
proposed. Firstly, a set of fuzzy rules is encapsulated into
a Boolean-valued function called a rule set function,
leading to the C-fuzzy trigger model. Subsequently, ac-
tions are expressed also in fuzzy terms, and the corre-
sponding CA-fuzzy trigger model is proposed. Examples
are provided to illustrate how fuzzy triggers can be applied
to a real-life drive control system in an industrial installa-
tion.

1. Introduction

There has been considerable interest in active database rules
(called triggers in commercial applications, and in the
SQL3 proposal [SQL3]) over the last decade (see [WC96a],
p. 303-324, for a reference list). Active databases provide
the capability to react to database (and possibly external)
stimuli, called events, without user intervention. In recent
years, there has been efforts towards integrating active da-
tabases with new technologies such as temporal and real-
time databases [BH95, RSS+96]. We are investigating
another issue which is incorporating fuzzy logic into ac-
tive databases. The objective is to apply fuzzy techniques
to the evaluation of the trigger condition which has been
traditionally based on a Boolean predicate.

Fuzzy logic [Zad65] deals with statements that can be
true to a certain degree: the values are between 1
(completely true) and 0 (completely false). Thus, fuzzy

† Currently with Bell Sygma, Inc., 700 rue de la Gauchetiere Ouest,
 Montreal, Quebec, H3B 4L1 Canada.

logic (FL) provides a systematic basis for representing
imprecision and/or uncertainty. Another objective of FL is
to mimic the ability of the human mind to effectively em-
ploy modes of reasoning that are approximate rather than
exact. Nowadays, applications of fuzzy logic are found in
many fields [MJ94], including automatic control, artificial
intelligence [ZK84, LWL89], databases [DEB89, Pet96],
pattern recognition, decision analysis, etc.

To our best knowledge, no effort has been made to
bring imprecision and uncertainty to database triggers.
Similar work has been addressed in the context of fuzzy
expert systems [Zad84, Zad89]. Zadeh noted that since
most expert’s knowledge is fuzzy, most of its facts and
rules are fuzzy. Fuzzy expert systems allow fuzziness of
antecedents and/or consequents in the rules of the form “if
X is A then Y is B” where “X is A” and “Y is B” are fuzzy
propositions. They also utilize approximate reasoning
[Zad89, GKB+84] which deals with inference under impre-
cision and/or uncertainty.

The main idea behind our work is similar in spirit to
the one considered in the context of fuzzy expert systems.
This work was originally driven by the requirements of a
real application domain which was a paper machine drive
management system. In order to avoid failures of the drive
system, end-users wanted a single mechanism which two
requirements: (1) an ability to notify users about process
data states requiring operator attention, and (2) a possibil-
ity to express the conditions to be detected in a simple and
intuitive way capturing imprecise utterances like “the tem-
perature rise is strong”.

The requirements were typical for industrial process
management applications characterized by ever-increasing
amounts of data stored in process databases. Faced with the
lack of precise process models, users demand to be able to
apply imprecise measures to the management of informa-
tion flood.

The paper presents two main contributions:

Proc. 14th Int'l Conf. on Data Engineering (ICDE'98),
Feb., 23-27, 1998, Orlando, Florida.

Copyright © 1988 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in
works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 /
Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

• We propose to embed fuzzy rules within a Boolean-val-
ued trigger condition. Model of such a trigger, called a
C-fuzzy trigger, is presented in Section 3.

• We introduce the concept of a fuzzy action and propose
a reasoning mechanism with the purpose of selecting a
real action. The corresponding CA-fuzzy trigger model
is proposed in Section 4.

Both proposed trigger models operate in a traditional envi-
ronment of a crisp database. They enable to embed applica-
tions semantics in a database in an effective and intuitive
way, as was shown in the case study [PBW96].

We discuss pro's and con's of the approach in Section
5. Open questions and research plans are presented in Sec-
tion 6.

2. Basic concepts of fuzzy inference

This section introduces basic concepts of fuzzy sets and
fuzzy inference [KY96], required to define fuzzy triggers.
Informally, a fuzzy set is a set with imprecise boundaries
in which the transition from membership to non-member-
ship is gradual rather than crisp. In this way, a fuzzy set F
in a universe of discourse U is characterized by a member-
ship function µF, which associates each element u ∈ U
with a grade of membership µF(u) ∈ [0, 1] in the fuzzy set
F. Note that a classical set A in U is a special case of a
fuzzy set with all membership values µA(u) ∈ {0,1}.

1.1 Linguistic variables

The basic concept underlying fuzzy logic is that of linguis-
tic variable, which is a variable whose values are words
rather than numbers. A linguistic variable is characterized
by a quintuple (x, T(x), U, G, M) in which x is the name
of the linguistic variable; T(x) is the term set of x, that is,
the set of names of linguistic values (terms) of x defined
on U; G is a syntactic rule for generating the names of
values of x; and M is a semantic rule for associating with
each value its meaning.

Example 1.

Let us consider the linguistic variable Temperature. Its
term set T(Temperature) could be T (Temperature) = {low,
normal, hot} where each term is characterized by a fuzzy
set in a universe of discourse U= [0, 300]. We might in-
terpret “low” as “a temperature below 100oC,” “normal” as
“a temperature close to 120oC,” and “hot” as “a tempera-
ture above about 130oC”. These terms can be characterized
as fuzzy sets whose membership functions are formulated
below and shown in Fig. 1. For example, if the current
temperature is 90oC then the membership degree to the
fuzzy subset low is equal to 0.6.

µlow = Trapezoidal(0, 0, 80, 100)
µnormal = Trapezoidal(90, 120, 120, 140)
µhot = Trapezoidal(130, 160, 300, 300)

1 low

0 80 90 100 120 130 140 160

0.6

300

normal hot

Figure 1. Membership functions of the linguis-
tic variable Temperature.

1.2 Fuzzy inference

A fuzzy implication is viewed as describing a fuzzy rela-
tion between fuzzy sets forming the implication [MJ94].
A fuzzy rule, such as “if X is A then Y is B” is a fuzzy
implication which has a membership function µA→ B(x, y)
∈ [0, 1]. Note that µA→B(x, y) measures the degree of truth
of the implication relation between x and y. The if part of
an implication is called the antecedent (premise), whereas
the then part is called the consequent. Using the Mam-
dani’s (minimum) implication, the membership function
of the fuzzy implication is defined as:

µA → B(x, y) = min[µA(x), µB(y)]

It is easy to see this is not a correct extension of a tradi-
tional propositional logic implication, because 0→0 yields
zero. However, this interpretation of the fuzzy implication
is more useful for some applications).

In fuzzy logic, Modus Ponens is extended to General-
ized Modus Ponens in the following manner: given the
input “X is A*” and the fuzzy rule “if X is A then Y is B”
then the consequence is “Y is B*”. The membership func-
tion of the conclusion, the fuzzy set B*, is defined as fol-
lows [Zad84, Zad89]:

µB*(y)= maxx∈ A*[µA*(x) ∧ µA → B(x, y)] (1)

Generalized modus ponens has been adapted and used
widely in control applications; the mechanism is called
interpolative reasoning. This mechanism is needed for ap-
plications for which the input-output relationship is de-
scribed by a collection of fuzzy if-then rules. A fuzzy logic
system, using the interpolative reasoning, is characterized
by the following algorithmical steps:

(1) Fuzzification:

The process of converting a crisp input data, x’ = x0 ∈ U,
to a fuzzy set A*, is called fuzzification. It maps the in-
puts into their membership functions and truth values,
these mappings are then fed into the rules. The most
widely used fuzzifier is a fuzzy singleton defined by:

2

µA*(x) = 1 if x = x’, ∀ x ∈ U

µA*(x) = 0 if x ≠ x’

The fuzzy input set A* only contains a crisp element x’.
In this case, the formula (1) becomes a fuzzy implication:

µB*(y)= 1 ∧ µA → B(x’, y)= µA → B(x’, y) (2)

Let us now consider a rule base (where X, Y and Z are lin-
guistic variables defined on the universe of discourse U, V
and W respectively):

Ri: if X is Ai and Y is Bi then Z is Ci i = 1..n

and given the input crisp fact (x0, y0), the goal is to de-
termine the output “Z is C*”.

(2) Interpolative reasoning (fuzzy inference):

The most commonly used fuzzy inference method is the
so-called Max-Min inference method. The process for ob-
taining the fuzzy output using the Max-Min inference
method consists of the following steps:

• Finding the firing level of each of the rules: The truth
value for the premise of each rule is computed, and ap-
plied to the conclusion part of each rule. The member-
ship functions defined on the input variables are applied
to their actual values to determine the degree of truth for
each rule premise. The degree of truth for a rule’s prem-
ise is sometimes referred as its alpha. It is computed as
follows:
α i = µAi and Bi(x0, y0) = min(µAi(x0) , µBi(y0))

If a rule’s premise has nonzero degree of truth (i.e.
when the input matches partially the premise of the
rule) then the rule is fired.

• Inferencing: The second step is to find the output, C*i,
of each of the rules:
µC*i (w)= µ(Ai and Bi)→Ci(x0, y0, w) ∀ w ∈ W

In the Min inferencing, which uses the Mamdani’s im-
plication rule, the implication is interpreted as a fuzzy
and operator:
µC*i (w) = µAi and Bi(x0, y0) and µCi(w) =

min(µAi and Bi(x0, y0), µCi(w))

• Composition: All fuzzy subsets assigned to each output
variable are combined together to form a single fuzzy
subset for each output variable. The purpose is to ag-
gregate all the individual rule outputs to obtain the
overall system output. In the Max composition, the
combined output fuzzy subset C* is constructed by tak-
ing the maximum over all of the fuzzy subsets assigned
to the output variable by the inference rule:
µC*(w)= max(µC*1(w), µC*2(w),.... , µC*n (w)) ∀ w ∈ W

(3) Defuzzification:

The result of the fuzzy inference system is a fuzzy set. The
defuzzification step produces a representative crisp value as

the final output of the system. There are several defuzzifi-
cation methods [Men95]. The most commonly used is the
Centroid (Center-of-gravity) defuzzifier which provides a
crisp value based on the center-of-gravity of the result (the
output fuzzy set graph).

3. C-fuzzy triggers

In this section we propose a trigger model incorporating
approximate reasoning (fuzzy inference) in the process of
the evaluation of the condition part of an ECA trigger. We
are calling such triggers C-fuzzy triggers (or Condition-
fuzzy ECA triggers). The execution model of C-fuzzy trig-
gers can be easily implemented using existing fuzzy infer-
ence tools.

3.1 Incorporating fuzzy inference

In order to utilize the expressive power of fuzzy rules and
to apply fuzzy inference to the trigger condition part, we
propose a special function called the rule set function
(RSF):

RSF R S S Di i: × →×{ }−1

where R is a set of fuzzy rules (a rule set), each of which
is in the form:

if FP then FC

where FP is a fuzzy antecedent (predicate) and FC is a
fuzzy consequent. FP and FC are constructed from fuzzy
propositions:

X IS ax

where X is a linguistic variable representing a database
value, fuzzified using the term ax (and the corresponding
membership function) in the term set Ax, a Ax x∈ . Fuzzy

antecedents can be connected by fuzzy operators and, or and
not. The consequent linguistic variable should be the same
one occurring in all the fuzzy rules in R.

Si and Si-1 correspond to the current and previous data-
base states. The reference to these states is possible using
respectively the keywords new (default) and old in a con-
crete syntax. The range of RSF, D, is a domain (universe
of discourse) of the output linguistic variable. Thus, RSF
yields a crips value which can be used in a regular com-
parison predicate evaluating, in turn, to true or false.

3.2 Execution model

The execution model determines how triggers behave at
run-time. We will not elaborate further on the behavioral
dimensions of ECA triggers [PDW+93] such as coupling
modes, conflict resolution, etc. We consider a simple ECA
trigger execution model (as shown in [WC96b], p. 17). In
its simple form, the rule processing algorithm, which
characterizes the execution model, repeatedly executes three
consecutive calculations performed when an event occurs:

3

(1) detecting an event and finding a relevant trigger,

(2) evaluating the condition and

(3) executing the action if the condition is true.

Our approach of incorporating fuzzy inference into triggers
requires only the modification of the second calculation
steps of the above rule processing algorithm. The condi-
tion may induce one or more rule set function calls. Each
RSF is evaluated in the following way:

(1) Fuzzification: the linguistic variables in the antece-
dent part of the rules are evaluated, i.e., the corre-
sponding source data are fuzzified.

(2) Inference: the Max-Min inference method is applied
to the rule set, producing a fuzzy conclusion (a fuzzy
set).

(3) Defuzzification: the conclusion is defuzzified using
the Center-of-gravity method to yield the crisp func-
tion value which is then applied to the comparison
predicate.

Example 2.

This example shows how to generate overheating alarms
in a drive system. The main purpose is to watch the tem-
perature behavior of electric motors. The temperature of a
motor is expected to behave according to the motor ther-
mal model which defines the allowable temperature as a
function of power. Assume that all the relevant motor
measurement series are stored in a single table having the
following schema:

motor(TS, motorId, temp, deviation)

where TS is the measurement timestamp, temp is the
measured value of the motor's temperature, and deviation
denotes the deviation from the thermal model.

There are several steps to be followed when defining C-
fuzzy triggers: the definition of the linguistic types, the
rule set functions and the C-fuzzy triggers themselves. The
above entities are treated as first class database objects (i.e.
they can be created and removed similarly to tables). The
examples below are formulated using the syntax of the
language RQL/F of the TEMPO Server prototype imple-
mented in at VTT Information Technology. RQL/F is
based on the SQL language, and, specifically, the trigger
syntax is based on the SQL3 proposal.

Definition of linguistic types

We begin by defining the input and output linguistic vari-
ables of the fuzzy rules. The first input variable is called
tempCh and it represents the temperature change between
the current and the previous temperature. The second input
variable is called deviation and it reflects the deviation
according to the motor thermal model. The domain of the
linguistic variables is defined using linguistic types. To be
able to represent the above linguistic variable, we define a
linguistic type called TempDiff as follows:

create linguistic type TempDiff float (
 downStrong trapezoid(-100, -100, -60, -50),
 downModerate trapezoid(-60, -50, -30, -20),
 neutral trapezoid(-30, -20, 20, 30),
 upModerate trapezoid(20, 30, 50, 60),
 upStrong trapezoid(50, 60, 100, 100))

There is a single output variable which represents the se-
verity level of alarms. This variable is of linguistic type
Severity, defined as follows:

create linguistic type Severity float (
 t_none trapezoid(0, 0, 0.5, 1),
 t_low trapezoid(0.5, 1, 1.5, 2),
 t_medium trapezoid(1.5, 2, 2.5, 3),
 t_high trapezoid(2.5, 3, 4, 4))

Definition of the rule set

Once the fuzzy types and their fuzzy terms are defined, we
are able to define the rule set composed of fuzzy rules.
Fuzzy rules are a series of “if-then” statements and they
traduce the occurrence of alarming conditions. Let us as-
sume the default alarm value is t_none which is consid-
ered an output when none of the rules is fired. The rule set
may be defined as follows:

create rule set TemperatureAlarm
(tempCh TempDiff, dev TempDiff)
Severity DEFAULT t_none(
IF tempCh IS neutral AND dev IS upModerate
 THEN t_low,
IF tempCh IS neutral AND dev IS upStrong
 THEN t_medium,
IF tempCh IS upModerate AND dev IS upModerate
 THEN t_medium,
…)

The rule set TemperatureAlarm traduces that the alarm
level is a combined effect of the temperature deviation and
the temperature change. In order to simplify the syntax,
the output variable name does not appear explicitly in the
rules (only its type is specified as Severity, in the header)

Definition of C-fuzzy triggers

In the last step, we define the triggers. We include, in the
condition part of the triggers, a function call to the rule set
TemperatureAlarm. Three fuzzy triggers corresponding,
respectively, to a low, medium and high alarm, may be
defined to test the returning defuzzified value of the rule set
call. One of them is shown below. The trigger is fired by
each insertion of a measurement value.

create trigger Trig_alarm_high
INSERT ON motor
WHEN (TemperatureAlarm(
 NEW.temp-OLD.temp, deviation) > 3)
(HighTempAlarm@TempAlarms)

The keywords NEW and OLD represent a special semantics
of RQL/F database tables which have temporal characteris-
tics: after an INSERT, NEW denotes the inserted row and

4

OLD denotes the row inserted previously, in the same time
series. (In the standard SQL, the OLD/NEW semantics is
available with UPDATE only.)

If the WHEN predicate yields true, the action called
HighTempAlarm@TempAlarms is executed. The action
naming convention of RQL/F enables to call upon both
internal and external (i.e. executed outside the server proc-
ess) actions, depending on the application needs.

3.3 On the expressiveness of C-fuzzy triggers

For the purpose of the presentation clarity, the above ex-
ample was limited with respect to the expressive power of
an RSF: only one database table was used, and the rules
dealt with distinct values only. In general, the expressive-
ness of C-fuzzy triggers is dependent on the following
considerations:

• Domain of the rule set function: In many in-
dustrial applications, it is important to have the capa-
bility of reasoning based on the history of the database
in order to understand the trend of the process control.
The rule set function RSF, defined in section 3.1, can
be extended as follows:

 RSF R S
i

S
i

S
i

S
i n

D: ...× × − × − × × − →{ }1 2

 where Si corresponds to the current database state and Si-j

corresponds to the jth previous database state. Such an
RSF may be implemented in a temporal database. In
this case, an example of a rule antecedent could be
“IF a motor has been too hot for more then five
minutes …”.

• Fuzzy quantifiers: Regular triggers use two quan-
tifiers: universal and existential. Fuzzy triggers are
based on fuzzy rules and may utilize a wide variety of
fuzzy quantifiers exemplified by few, several, usually,
most, about ten, etc. A linguistically quantified
proposition may be written as “Q X’s ARE A” which
means Q elements of a set X are satisfying the fuzzy
predicate A. For example, the quantified proposition
“most motors are hot”, where hot is a linguistic term,
uses the fuzzy quantifier most. Fuzzy quantifiers are
able to range over the database. Thus, they extend the
fuzzy antecedent (predicate) of a fuzzy rule to address
the whole database state.

• Approximate reasoning on a fuzzy database:
Fuzzy databases provide the capability of storing im-
precise or vague data. This capability enables the user
to have a summarized view of the data. For example,
it is more useful for the user to know that a motor is
hot rather than to obtain a crisp value. In the context
of fuzzy databases, the inference process does not need
to fuzzify the values (i.e. the fuzzification phase is ig-
nored). Furthermore, the result of the inference (a
fuzzy set) can be stored and can be a source of other
events.

3.4 Advantages and limitations of C-fuzzy
triggers

We summarize the section about C-fuzzy triggers by high-
lighting the advantages and limitations of using them. The
main advantages of adopting C-fuzzy triggers are:

• Ease of implementation: the design of C-fuzzy
triggers focuses on a seamless integration of fuzzy in-
ference within database triggers. The TEMPO Server
prototype implementation has demonstrated that an
existing active database server can be easily extended
with fuzzy logic features, since existing fuzzy infer-
ence tools can be used.

• Expressiveness: C-fuzzy triggers, based on fuzzy
rules, enable to easily capture the expert knowledge
which is imprecise, incomplete or vague. This makes
C-fuzzy triggers a suitable model for knowledge repre-
sentation.

• Usabi l i ty: Fuzzy triggers enable to shorten the ap-
plication development time. A case study [PBW96] re-
inforced this claim. Our industrial partner1 gave high
marks to the possibility to define fuzzy database rules,
using a high-level language, in a totally dynamic way.

One limitation of C-fuzzy triggers is early defuzzification:
the defuzzification phase takes place when the crisp func-
tion output is evaluated. The defuzzification of results
could imply some difficulties to define the boundaries of
the comparison predicates. In the CA-fuzzy trigger this
deficiency is removed.

3.5 Implementation notes

C-fuzzy triggers have been implemented, at VTT Informa-
tion Technology, in the TEMPO Server which is a proto-
type active database system using fuzzy triggers. The
TEMPO Server is an extension of the active time series
database system RapidBase [WKP96] utilizing a temporal-
relational model and a language based on SQL.

The C-fuzzy trigger functionality of the TEMPO
Server was derived from a case study [PBW96] where re-
quirements and specific problems of a real industrial ap-
plication were analyzed, and the syntactical shape of the C-
fuzzy trigger was proposed. The implementation of the
TEMPO Server is described in a more detail in [BPKW97].
A demonstration application using the TEMPO Server can
be downloaded from a web site2

4. CA-fuzzy triggers

So far we have considered C-fuzzy triggers which extend
the conventional condition part of regular triggers by in-
cluding fuzzy rules in a rule set function. The next step is
to introduce fuzzy actions and to integrate them with the
condition part more tightly. Such a trigger, called a CA-

1 ABB Industry Oy, a manufacturer of complex drive systems for

industrial installations.
2 http://www.tte.vtt.fi/tte/projects/tempo/

5

fuzzy trigger, may be built by embedding action specifica-
tions in fuzzy rules. The main benefits of CA-fuzzy trig-
gers are:

• Reducing the proliferation of triggers: It is a
widely acknowledged fact that the proliferation of trig-
gers affects the performance of the system as well as it
makes the process of developing applications in active
databases very difficult [WC96b]. With CA-fuzzy
triggers, less triggers have to be defined in the system.

• Providing another dimension to the causal-
ity in active databases: Because a decision mak-
ing process is inherently a process of combining dif-
ferent sub-decisions, extending the individual-based
inference of triggers is very important. Indeed, the
cause-and-effect between the condition and the action
part of a regular trigger (or a C-fuzzy trigger) is a mat-
ter of yes/no (an action is executed iff the condition
matches exactly), whereas it is a matter of degree in
CA-fuzzy triggers.

A CA-fuzzy trigger can be symbolically represented as
E(CA)*, meaning that an event fires the evaluation of n
(n≥1) fuzzy if-then rules having a fuzzy antecedent and a
fuzzy action consequent.

1.1 Condition-Action model

In this model, the cause-effect relationship between the
database state and the concrete (implemented) actions is
expressed as a fuzzy rule set in the form:

if FP1 then FA1

if FP2 then FA2

...

if FPn then FAn

where FPi is a fuzzy predicate in the form proposed for C-
fuzzy triggers and FAi is a fuzzy action proposition repre-
sented as:

Z is zi

Where Z is a fuzzy action linguistic variable such that
T(Z) = {z1, z2, ... zn} . There also exists a set of concrete
actions A = {a1, a2, ... an} of which each ai (i = 1, 2, ... n)
may be implemented, in a real system, as a distinct proce-
dure. The sets Z and A are said to be mapped to each other
if zi is associated with ai, for each i = 1, 2, ... n..

Thus, a linguistic term zi denotes a fuzzy action and it
is uniquely associated with a concrete action. All the
membership functions of Z are defined over the same arbi-
trary domain where the relationships among the fuzzy
actions are captured.

For example, in Fig. 2, the fuzzy actions: zero, low,
medium and high are associated with (mapped to) the con-
crete actions Action1, Action2, Action3 and Action4, re-
spectively.

zero

1
low medium high

Action1 Action2 Action4

0
Action3

Figure 2. Example of membership functions of
fuzzy actions.

1.2 Execution model

CA-fuzzy triggers induce the modification of the calcula-
tion steps of both the condition and the action parts of the
rule processing algorithm. The CA-fuzzy execution model
is as follows:

(1) Event signaling:

An event is detected and associated with a trigger,

(2) Fuzzification:

The linguistic variables in the antecedent part of the rules
are evaluated, i.e., the corresponding source data are fuzzi-
fied.

(3) Inference:

The Max-Min inference method is performed and a result
Z* formed by the fusion of the rule results is produced. In
Fig. 3, a possible result Z* = low-medium is shown if the
terms of the figure 2 are used in the fuzzy action proposi-
tion.

Action

low-medium

ca = Center-of-gravity

Figure 3. Example of a fuzzy result action.

(4) Action selection and execution:

The fuzzy result is then interpreted by invoking concrete
actions, using one of possible strategies, such as:

• Unique invocation maps the fuzzy result to exactly one
fuzzy action. The policy of selecting an action is to

(a) defuzzify the result, yielding the crisp action value,
ca.

6

(b) select the fuzzy action whose membership function
yields the highest value, for the given ca, i.e., zi such
that µ µ µ µzi ca z ca z ca zn ca() max((), (), ... ())= 1 2 .

(c) select the corresponding concrete action for execu-
tion.

For example, in Fig.3, the crisp value ca is mapped to
the fuzzy action low and, subsequently, to the concrete
action Action2.

• Multiple invocation maps the fuzzy result to zero,
one or more concrete actions. A possible mapping may
involve checking the membership degrees of fuzzy sub-
sets, in the inference result, and activating the corre-
sponding actions if the membership degree exceeds a
given threshold. In a general case, multiple invocation
requires further study.

Example 3.

Let us consider Example 2 presented in Section 3, which
deals with alarm treatment in a drive control system. We
will show that the trigger specification can be further sim-
plified using a CA-fuzzy trigger. Let us assume there are
three different alarm notification actions of which at most
one is to be invoked. The linguistic type and rule set defi-
nitions of Example 2 are used. The terms of the type Se-
verity become fuzzy actions by virtue of the action map-
ping, as shown in the following trigger definition
example:

create fuzzy trigger OverheatingTrigger
 INSERT ON motor
 INFER TemperatureAlarm(
 NEW.temp-OLD.temp, deviation)
 UNIQUE ACTION(
 t_low AS (LowTempAlarm@ TempAlarms),
 t_medium AS (MediumTempAlarm@TempAlarms),
 t_high AS (HighTempAlarm@TempAlarms))

The above example of a CA-fuzzy trigger does the job of
three C-fuzzy triggers, as one of three different actions may
be invoked. The UNIQUE ACTION clause specifies the
unique action invocation policy described above. A new
expressive power of a trigger is achieved by a major depar-
ture from the traditional trigger syntax: the condition and
action parts are replaced with the rule set (inference) part
andthe action mapping part, respectively.

5. Discussion

Fuzzy triggers allow for the use of fuzzy inference to
evaluate decisions when situations of interest occur. In this
section we address some common criticism of the fuzzy
approach and discuss possible application domains.

Critics of the fuzzy approach often ask who is going to
assign a membership function of a linguistic term. This is
a problem of knowledge acquisition whereby a human ex-
pertise is required. In the most common way, the user de-
fines the shape of a membership function. There exists

however a (semi-)automatic approach to generate member-
ship functions. It is based on the use of soft computing
techniques such as neural networks and genetic algorithms
[Tuk91].

The proposed fuzzy trigger models can be applied to
many application domains, where combining fuzziness
with active behavior is needed. We believe that regular
triggers and fuzzy triggers can be used in a complementary
way. Thus, the part of the application which is inherently
fuzzy will be easily expressed using fuzzy triggers.

Fuzzy triggers are needed particularly in the case of
process management and automation systems where pro-
prietary (non-database) solutions are still in use. The ac-
ceptance of the new database technology by the industry is
best promoted by providing mechanisms which meet the
requirements. Process databases are useful because they
provide an efficient means of storing and querying process
measurement data. Mechanisms such as fuzzy triggers are
useful because they allow to analyze intelligently large
volumes of stored data. In this respect, we believe that
fuzzy triggers will make databases even more attractive to
developers of industrial applications.

An attentive reader noticed that we have dealt mostly
with applications requiring generation of intelligent event
notifications. One may ask: What about the traditional role
of triggers in the area of maintaining database consistency?
In a brief study [BW97b] we have shown that fuzzy trig-
gers can be used for that purpose, too.

6. Future work

The CA-fuzzy trigger model and fuzzy quantifiers are being
implemented in the SENSE project3. More study will be
also performed on the needs of the industrial user commu-
nity in order to achieve the most convenient interface for-
mat of the proposed mechanisms.

There remain several other issues which require further
investigations, such as a general model of fuzzy events
capturing event composition. In [BW97a], we have intro-
duced the concept of fuzzy event and proposed a trigger
model dealing with it. Another important issue to study is
the inter-relationship between the proposed fuzzy concepts
and other behavioral dimensions of active database systems
[PDW+93] like coupling modes, termination, etc.

7. Conclusions

Various applications, for example in industrial systems,
require fuzzy concepts to capture the relevant semantics.
To do this, we propose fuzzy database triggers (fuzzy ac-
tive database rules) which aim at combining two important
areas: fuzzy reasoning and active databases. In this paper,
we first extend the basic semantics of event-condition-
action rules with fuzzy rules and fuzzy inference. The cor-
responding C-fuzzy trigger model was implemented and
tested in an example application. A more advanced model,
the CA-fuzzy trigger model, is also proposed, where fuzzy

3 http://www.tte.vtt.fi/tte/projects/sense/

7

actions are introduced and integrated with the inference
process. CA-fuzzy triggers reduce the proliferation of trig-
gers by providing a possibility to capture several actions
in a single trigger definition. By way of examples utilizing
concrete syntax, we showed that the proposed models may
result in intuitive and user-oriented interfaces.

References

[BH95] M. Berndtsson, J. Hansson (eds.): Active and
Real-Time Database Systems (ARTDB-95),
Proc. First Int'l Workshop on Active and Real-
Time Database Systems, Skövde, Sweden, 9-
11 June 1995.

[BW97a] T. Bouaziz and A. Wolski, "Applying Fuzzy
Events to Approximate Reasoning in Active
Databases", Proc. Sixth IEEE Int'l Conference
on Fuzzy Systems (FUZZ-IEEE’97), July 1-5,
1997, Barcelona, Catalonia, Spain, pp.
729–735, also at:
ftp://ftp.vtt.fi/pub/projects/rapid/f-event-
triggers.ps.

[BW97b] T. Bouaziz and A. Wolski, "Maintaining Soft
Constraints using Fuzzy Triggers", position
paper, Workshop on Imprecision/Uncertainty
in Databases, Spain, July 5-6, 1997, (Jointly
with FUZZ-IEEE’97 conference).

[BPKW97] T. Bouaziz, J. Karvonen, A. Pesonen, and A.
Wolski, "Design and Implementation of
TEMPO Fuzzy Triggers", Proc. Eighth Int’l
conference on Database and Expert Systems
Applications (DEXA’97), Sept. 1-5, 1997,
Toulouse, France, pp. 91–100, also at: ftp://
ftp.vtt.fi/pub/projects/rapid/tempo-design.ps.

[DEB89] Data Engineering Bulletin, Special Issue on
Imprecision in Databases, 12(2), June 1989.

[GKB+84] M.M. Gupta, A. Kandel, W. Bandler, and J.
Kiszka (eds.), Approximate Reasoning in Ex-
pert Systems. Elsevier Science Publishers,
North-Holland, 1984.

[IS89] Information Systems, 14(6), 1989.

[KY96] J. George Klir and B. Yuan (eds.), "Fuzzy Sets,
Fuzzy Logic, and Fuzzy Systems: Selected
Papers by Lotfi A. Zadeh", Advances In Fuzzy
Systems-Applications and Theory, Vol. 6,
1996.

[LWL89] K.S. Leung, M.H. Wong and W. Lam, "A
Fuzzy Expert Database System", Data &
Knowledge Engineering, Vol. 4, 1989, pp.
287–304.

[Men95] J.M. Mendel, "Fuzzy Logic Systems for Engi-
neering: A Tutorial", Proc. of the IEEE, Spe-
cial Issues on Engineering Applications of

Fuzzy Logic, 83(3), March 1995, pp.
345–377.

 [MJ94] T. Munakata and Y. Jani, "Fuzzy Systems: An
Overview", CACM, 37(3), March 1994, pp.
69–76.

[PBW96] A. Pesonen, T. Bouaziz, and A. Wolski, "Case
Study: Applying Fuzzy Triggers to a Drive
Control System", Research Report No. J-6/96,
VTT Information Technology, Espoo, Finland,
August 1996.

[PDW+93] N.W. Paton, O. Diaz, M.H. Williams, J.
Campin, A. Dinn, and A. Jaim, "Dimension of
Active Behavior", Proc. 1st Int'l Workshop on
Rules in Database Systems, Edinburg
(Scotland), August 1993, pp. 40–57.

[Pet96] F.E. Petry, Fuzzy Databases: Principles and
Applications, with contribution by Patrick
Bosc, International Series in Intelligent Tech-
nologies, 1996, 240 pages.

[RSS+96] K. Ramamrithan, R.M. Sivasankaran, J.A.
Stankovic, D.T. Towsley and M. Xiong,
"Integrating Temporal, Real-Time, and Active
Databases", SIGMOD Record 25(1), 1996, pp.
8–12.

[SQL3] ANSI X3H2-97-030/LBL:LGW-008 (Working
Draft), Database Language SQL / Foundation,
J. Melton (ed.), March 1997.

[Tuk91] I.B. Turksen, "Measurement of Membership
Functions and their Acquisition", Fuzzy Sets
and Systems, Vol. 40, 1991, pp. 5–38.

[WC96a] J. Widom and S. Ceri (eds.) Active Database
Systems: Triggers and Rules For Advanced Da-
tabase Processing. Morgan Kaufmann, 1996.

[WC96b] J. Widom and S. Ceri, "Introduction to Active
Database Systems" in [WC96a], pp. 1–41.

[WKP96] A. Wolski, J. Karvonen and A. Puolakka, "The
RAPID Case Study: Requirements for and the
Design of a Fast-Response Database System",
Proc. First Workshop on Real-Time Databases
(RTDB'96), March 7-8, Newport Beach, CA,
USA, pp. 32–39, also at: ftp://ftp.vtt.fi/pub/
projects/rapid/case.ps.

[Zad65] L.A. Zadeh "Fuzzy Sets", Information Control,
8(3), June 1965, pp. 338–353.

[Zad84] L.A. Zadeh, "The Role of Fuzzy Logic in the
Management of Uncertainty in Expert Sys-
tems", In [GKB+84], pp. 3–31.

[Zad89] L.A. Zadeh, "Knowledge Representation in
Fuzzy Logic", IEEE Trans. on Knowledge and
Data Engineering, 1(1), 1989, pp. 89100.

[ZK84] M. Zemankova and A. Kandel, "Uncertainty
Propagation to Expert Systems" In [GKB+84],
pp. 529–548.

8

