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Abstract

In active monitoring, a monitoring system is given the responsibility of de-
tecting conditions of interest, in a process, and taking the necessary actions
like invoking alarms. RapidBase is a system for active monitoring utilizing
an active database where database triggers, including fuzzy triggers, are
used as basic monitoring tools. Two new instruments are introduced for use
in fuzzy triggers: fuzzy quantifiers for expressing set-oriented propositions
and fuzzy-temporal restrictors allowing to bind propositions to given
intervals or points of time. The corresponding implementation is also
described and its performance is analyzed.

Keywords: process management, control room, active database, fuzzy rule
set, fuzzy trigger, fuzzy quantifier, fuzzy temporal restrictor.

1 Introduction

In industrial process management systems (PMS), the measurement data acquired from
the process is scrutinized in a variety of ways. Aside from the role of the data in a
closed-loop automatic control system (which is outside the scope of this work), the data
is used to monitor the process in a control room environment. By a process we under-
stand any continuous mechanized or computerized activity that may produce measure-
ment data. Such processes and the corresponding management systems are common in
traditional industries like chemical, petroleum, paper and energy industries. The con-
cepts of SCADA (Supervisory Control and Data Acquisition) in the utilities industry
and NMS (Network Management System) in telecommunications fall within the same
category.

The scope of this paper is limited to the needs of short-time process monitoring. Typi-
cally, this involves control room personnel who interact with the system to receive the
information needed to manage the system properly. Traditional functions of a PMS in-
volve displaying current measurement values, measurement trends (i.e. time series
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graphs) at different time densities and calculating various aggregate values (e.g. aver-
ages, minimums, maximums, etc.) over periods of time. More advanced requirements
call for active monitoring. Active monitoring is a capability of a PMS to autonomously
apply various computational and decision-making models to process data as it changes.
This includes recognizing certain process states of various space and time complexity.

 In a generalized implementation of a PMS with active monitoring capabilities, one
would require to have:

(1) a high-level (meaning: easy) access to measurement data, both momentary
and historical;

(2) active mechanisms to invoke computations based on data changes;

(3) decision-making models suitable for capturing process knowledge;

(4) model engines to run decision-making models;

(5) an easy-to-use way to define and modify data and decision-making models.

In our approach to the active monitoring problem, we have put together the ideas of
temporal databases, active databases and fuzzy inference. The temporal database ap-
proach introduces a systematic treatment of all the data (point 1 above). The active da-
tabase brings in data-oriented active mechanisms (2). The fuzzy inference model makes
it possible to capture intuitive process knowledge handily (3), and the related fuzzy in-
ference engine takes care of run-time model execution (4). The database approach, in
general, makes it possible to use one high-level language to control and access all the
objects involved (5).  RapidBase is an active measurement database system based on
the above principles. An overview of RapidBase is given in [WKLP99].

To our best knowledge, neither active nor temporal databases have been applied to the
active monitoring problem. A related notion of ARCS (Active Rapidly Changing Data
Systems) was introduced [Dat94], but no significant implementations has been
reported. The temporal database research community (see [VK96], for a list of
references) has concentrated on multitemporal data models and ignored mostly the need
for a separate time series model. The support for time series has eventually received
some attention [Dre94], and several implementations are known, but they are mostly
tuned to the needs of financial applications.

Active databases were introduced [DM89] with the primary purpose of database integ-
rity constraint maintenance. On the basis of input from our industrial customers, we
extended the active database concepts to meet the monitoring requirements [WKP96]
and, later on, we introduced fuzzy triggers [WB98]. In fuzzy triggers, the fuzzy infer-
ence model based on fuzzy rules [MJ94], and widely applied in fuzzy logic controllers
(FLCs), was utilized.

The contribution of this paper is in the presentation of two new fuzzy instruments in the
context of an observation database: fuzzy quantifiers for formulating propositions about
observation value sets and fuzzy temporal restrictors for evaluation of fuzzy predicates
in a temporal space.
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The principles of using an active database for active monitoring are presented in
Section 2. In Section 3, an introduction to fuzzy triggers is given. The model of fuzzy
quantification in the context of active monitoring is included in Section 4. Fuzzy
temporal restrictors are introduced in Section 5. Section 6 comprises implementation
notes, and some performance results are presented in Section 7.

2 Applying active database to active monitoring

Active database is a database where data manipulation operations (such as an update)
may ignite further calculations not explicitly specified by the issuer of the data manipu-
lation operation. These further calculations are embodied in persistent database objects
called active rules, or triggers. Users may specify triggers to achieve the required active
behaviour of a database. In order to be able to do this, database languages like SQL
have been enhanced to incorporate trigger definition syntax (see [WC96] for a survey of
research in active databases).

The  prevailing trigger execution model is called ECA (event-condition-action)
[DM89]. An ECA trigger consist of three computational blocks that are executed se-
quentially and some of them conditionally:

• The event block is responsible for detecting an event of the type the trigger is
tuned in to. Typically, an event type is a modification to a database table (an
update or insert in SQL) or to a class extension or to an object instance. When
a relevant event is detected, the trigger is said to be fired.

• The condition block is optional. If present, it specifies a predicate to be evalu-
ated over the database, after the trigger is fired.

• The action block specifies the actions to be taken (launched) by the trigger
when it is fired and the condition block evaluates to true. If the condition
block is missing, the actions are launched upon trigger firing.

Triggers offer a power of expression needed in active monitoring. In the following ex-
ample, a trigger called "boiling_alarm" is defined using the syntax of the RapidBase
SQL-like language called RQL. The language keywords are shown in capital letters.

CREATE TRIGGER boiling_alarm UPDATE ON boilers
   WHEN OLD.temperature < 100 AND
        NEW.temperature >= 100
   DO SET state = ’boiling’
   DO CALL BoilingAlarm@AlarmDisplay (OTS, temperature);

The purpose of the trigger is to detect situations when the temperature of any boiler ex-
ceeds boiling point of 100o C. The event type is an update on table "boilers". In the
WHEN clause, the condition is specified to be evaluated for the triggering row, that is,
a row in a table an update occurred in. By way of the OLD and NEW keywords, it is
possible to access both the previous and the current column value in a triggering row,
respectively. The DO clauses are used to specify the actions. The first one (SET)
changes the value of a state variable in the triggering row. The second one (CALL)
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sends a call to a remote procedure "BoilingAlarm" served by an external application
named "AlarmDisplay".

In order to meet requirements of complex active monitoring, in RapidBase we have ex-
panded the basic trigger model exemplified above. We introduced timer triggers
[WKP96] to incorporate delays and, lately, clock triggers to utilize events generated by
a real-time clock. Other contributions include [WKLP99]: multiple condition-action
blocks allowing to specify a complex finite state automaton in a single trigger, trigger
variables to facilitate execution time calculations, and various ways to utilize user-de-
fined functions and procedures. Generally speaking, computations of any complexity,
dealing with the wealth of the temporal measurement space, may be easily programmed
by users and included both in the condition and action blocks.

3 Fuzzy triggers

This section introduces basic concepts of fuzzy sets and fuzzy inference [KY96], re-
quired to define fuzzy triggers . Also, the fuzzy trigger types of RapidBase are pre-
sented.

3.1 Basic concepts

3.1.1 Fuzzy set

A fuzzy set is a set with imprecise boundaries in which the transition from membership
to non-membership is gradual rather than abrupt. In this way, a fuzzy set F in a universe
of discourse U is characterized by a membership function µF, which associates each
element u ∈ U with a grade of membership µF(u) ∈[0, 1] in the fuzzy set F. Note that a
classical set A in U is a special case of a fuzzy set with all membership values µA(u)
∈{0, 1}.

3.1.2 Linguistic variable

The basic concept underlying fuzzy logic is a linguistic variable, which is a variable
whose values are words rather than numbers. A linguistic variable is characterized by a
quintuple (x, T(x), U, G, M) in which x is the name of the linguistic variable; T(x) is the
term set of x, that is, the set of names of linguistic values of x defined on U; G is a syn-
tactic rule for generating the names of values of x; and M is a semantic rule for associ-
ating with each value its meaning.

Example: Let us consider the linguistic variable Temperature. Its term set
T(Temperature) could be T (Temperature) = {low, normal, hot} where each term is
characterized by a fuzzy set in a universe of discourse U = [0, 300]. We might interpret
“low” as “a temperature below about 100° C,” “normal” as “a temperature close to
110° C,” and “hot” as “a temperature above about 120° C”. These terms can be charac-
terized as fuzzy sets whose membership functions are shown in Fig. 1. For example, if
the current temperature is 90° C then the membership degree to the fuzzy subset low is
equal to 0.5.
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µ lo w  =  T ra p e z o id a l(0 , 0 , 8 0 , 1 0 0 )
µ n o rm a l =  T ria n g lu la r (8 0 , 1 1 0 , 1 4 0 )
µ h o t =  T ra p e z o id a l(1 2 0 , 1 4 0 , 3 0 0 , 3 0 0 )

         8 0         1 0 0         1 2 0        1 4 0

1
lo w                  n o rm a l                h o t

Figure 1. The membership functions of the linguistic variable Temperature.

Fuzzy logic provides operations, which act on fuzzy sets. Those operations are counter-
parts to those, which act on crisp sets. For example, the union (A∪B) of two fuzzy sets
is defined as:

µA∪B(x)= max (µA(x) , µB(x)) ∀ x ∈ U

3.1.3 Fuzzy inference

The process of converting the crisp input data to a fuzzy set A*, is called fuzzification.
It maps the input data into their membership functions. The most widely used fuzzifier
is a fuzzy singleton defined by:

µA*(x) = 1 if x = x’, ∀ x ∈ U (3.1)

µA*(x) = 0 if x ≠ x’

In this case the fuzzy input set A* only contains the crisp element x’.

A fuzzy implication is viewed as describing a fuzzy relation between fuzzy sets forming
the implication [MJ94]. A fuzzy rule, such as “if X is A then Y is B” is a fuzzy im-
plication which has a membership function µA→ B(x, y) ∈ [0, 1]. Note that µA→B(x, y)
measures the degree of truth of the implication relation between x and y. The if part of
an implication is called the antecedent (premise), whereas the then part is called the
consequent. Using the Mamdani’s (minimum) implication, the membership function of
the fuzzy implication is defined as:

µA → B(x, y) = min[µA(x), µB(y)] (3.2)

In fuzzy logic, Modus Ponens is extended to Generalized Modus Ponens in the follow-
ing manner: given the input “X is A*” and the fuzzy rule “if X is A then Y is B” then
the consequence is “Y is B*”. The membership function of the conclusion, the fuzzy set
B*, is defined as follows [Zad89]:

µB*(y)= maxx∈A*[µA*(x) ∧ µA → B(x, y)] (3.3)

Generalized modus ponens has been adapted and used widely in control applications;
the mechanism is called interpolative reasoning. This mechanism is needed for appli-
cations for which the input-output relationship is described by a collection of fuzzy if-
then rules. Let us consider the following rule base (where X, Y and Z are linguistic
variables defined on the universe of discourse U, V and W respectively).

Ri: if X is Ai and Y is Bi then Z is Ci     i = 1..n
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Given the crisp input (x0, y0), the goal is to determine the output “Z is C*” using fuzzy
inference. The most commonly used fuzzy inference method in engineering
applications is the so-called Max-Min inference method [Men95]. Inference steps used
in RapidBase are explained in [WB98]

The result of the fuzzy inference system is a fuzzy set. The defuzzyfication step pro-
duces a representative crisp value as the final output of the system. There are several
defuzzification methods [Men95]. The most commonly used is the Centroid (Center-of-
gravity) defuzzifier, which provides a crisp value based on the center-of-gravity of the
result (the output fuzzy set).

3.2 RapidBase fuzzy triggers

The concept of database triggers is enhanced in RapidBase to incorporate fuzzy infer-
ence. We proposed fuzzy triggers first in [BW96] (see also [BW97], [BKPW97] and
[WB98]). There are two kind of fuzzy triggers: C-fuzzy and CA-fuzzy triggers. Both of
these trigger types are based on the ECA trigger model. The example referenced to in
the sequel can be found in the Appendix.

3.2.1 C-fuzzy trigger

In a C-fuzzy (Condition-fuzzy) trigger, a fuzzy rule set is encapsulated in a crisp-valued
function, which can be used in an evaluation of a regular Boolean-valued predicate of
the ECA trigger condition part. The C-fuzzy trigger provides a convenient way of intro-
ducing the fuzzy inference mechanism to traditional active database systems.

In RapidBase, we introduce a set of database objects for constructing a C-fuzzy trigger.
A linguistic type encapsulates a set of terms to be used as a type of a linguistic variable
(example command 1 in the Appendix). A fuzzy rule set is used by the fuzzy inference
engine of the database Server to infer, ultimately, crisp results for the condition part of
a trigger (example 3). To incorporate fuzzy reasoning into a C-fuzzy trigger, a fuzzy
rule set call is used in the condition of the trigger (example 4).

3.2.2 CA-fuzzy trigger

A more powerful model, called a CA-fuzzy trigger, was also proposed [WB98] whereby
approximate reasoning was integrated within the condition-action component of a trig-
ger. In a C-fuzzy trigger we extended the condition part of a trigger with fuzzy predi-
cates. In a CA-fuzzy trigger, a decision whether or not to execute a specific action is
based on the fuzzy inference (hence fuzzy action).

The cause-and-effect relationship between the database state and concrete actions is
expressed as a fuzzy rule set in the form:

if FP1 then FA1

if FP2 then FA2

...
if FPn then FAn
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A fuzzy predicate FPi is constructed from fuzzy propositions. FAi is a fuzzy action
proposition represented as: izisZ    where Z is a linguistic variable having a set of lin-

guistic terms {z1, z2, ... zn}. We have also a set of concrete actions A = {a1, a2, ... an} of
which each ai (i=1,2,...n) is a concrete action (e.g., a database command). The sets Z
and A are said to be mapped to each other by associating zi with ai, for each i = 1, 2, ...
n. Thus, each linguistic term zi is uniquely associated with a concrete action ai For
example, in Fig. 2, the fuzzy actions: zero, low, medium and high are associated with
the concrete actions Action1, Action2, Action3 and Action4, respectively.

1
z e ro                     lo w                  m e d iu m                  h ig h

A c tio n 1             A c tio n 2               A c tio n 3               A c tio n 4

Figure 2. An example of membership functions of fuzzy actions.

The execution model of CA-fuzzy triggers involves detecting of an event, performing
the interpolative reasoning process and executing an action in which the Center-of-
gravity of the interpolative reasoning result has the highest membership degree. The
term–action mapping can be seen in the example 5.

4 Quantified-fuzzy reasoning

Classical logical systems use two quantifiers: universal and existential. Fuzzy logic, on
the other hand, admits a wide variety of fuzzy quantifiers [Pet96] exemplified by few,
several, usually, most, about ten, etc. Fuzzy quantifiers are relevant in a database envi-
ronment where we naturally maintain various structured sets of data (like tables,
collections, etc.). A linguistically quantified proposition may be written as “Q A’s ARE
B” which means that Q elements of a set A are satisfying the fuzzy predicate B.

4.1 The calculus

To make the concept of a fuzzy quantifier meaningful, it is necessary to define a way of
counting the number of elements in a fuzzy set or, equivalently, to determine its cardi-
nality. The concept of sigma-count is used for this purpose: Let F be a fuzzy subset of
U = {u1, …, un} expressed symbolically as F = {(u, µF(u)) / ∀ u ∈ U}. The sigma-count
of F is defined as the arithmetic sum of the membership degrees of the elements of F,
i.e.:

Count F
i

( ) ≡ ∑∑ µF(ui) i=1,…,n  (4.1)
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We need two steps to interpret the proposition Q A’s ARE B. The first step is to com-
pute the proportion of elements of A in B. The concept of relative sigma-count, denoted
by Count B A( / )∑ , is used for this purpose and is defined as follows:

Count B A( / )∑ =
Count B A

Count A

( )

( )

∩∑
∑

(4.2)

The relative sigma-count of A in B can be easily expressed in terms of the membership
functions of A and B. Particularly, when A is a crisp set, i.e. µA(u)=1 / ∀ u ∈ A, then
the relative sigma-count becomes:

ρ=∑ )/( ABCount =
)(

)(

AyCardinalit

BCount∑
(4.3)

The second step is to compute the truth of the proposition Q A’s ARE B. It is defined as
µQ(ρ); the membership degree of the result of the sigma-count, ρ, in the fuzzy set Q.

Example: Let us consider the proposition “most motors ARE hot”. We’ll assume the
following information:

The value set of motor temperatures A={140, 130, 90, 150, 160}

The fuzzy quantifier most is defined by a TRIANGULAR(0.6, 0.8, 1)

The linguistic variable hot is defined by a TRAPEZOIDAL(120, 140, 300, 300)

The proportion of hot motors in a set of motors is computed using the above formula:

ρ= 1 05 0 1 1

5

35

5
07+ + + + = =. . .

Finally, the truth of the proposition “most motors ARE hot” is computed as follows:

µQ(ρ)=µQ(0.7)=0.5

4.2 Quantified rule propositions in RapidBase

We include the construct quantifier type in RQL to support quantified sets. An example
of a definition of a quantifier type can be found in the Appendix (example 6). Also, an
example of a rule set with quantified fuzzy propositions, like "many mo-
tor_temperatures ARE hot" is included in the Appendix (example 7).

5 Temporal-fuzzy reasoning

A fuzzy-temporal restrictor is an entity that restricts a fuzzy proposition temporally. A
temporally restricted fuzzy proposition can be written as ’A be B T’ which means that A
is satisfying the fuzzy predicate B, taking into account the temporal restrictor T. The
temporal restrictor T is expressed as a membership function. be is a generic "be" verb
which can take different tempus according to the rule. Let us look at few examples of
temporally restricted fuzzy propositions:
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motor WAS warm few_minutes_ago

chemical_balance HAS BEEN strongly_increasing lately

5.1 The calculus

Until now, we have been dealing with fuzzy qualifiers (e.g., ‘hot’) and quantifiers (e.g.,
‘most’). Temporal restrictor is a new concept and it needs to be formulated. At first, lets
concentrate on the form of the proposition “A be B T” where A represents a single
value (singular entity). Eventually, A can also be a set of values (e.g., in the rule tem-
peratures WERE hot recently) possibly quantified with a fuzzy quantifier.

Lets look at an example of a membership function defining the temporal restrictor
few_minutes_ago (Fig. 3a). The origin of the membership function graph describes the
dynamic concept now, which means current time. The membership function
few_minutes_ago is defined to have a positive membership degree between “six min-
utes ago” and “two minutes ago”. Current time is changing all the time so, in fact, the
membership function definition is also constantly changing; it is relative. For example,
if the time was 04:00:15pm, few_minutes_ago was defined inside the time window
03:54:15pm and 03:58:15pm. Unlike with qualifiers and quantifiers, the evaluation
time te of a temporally restricted fuzzy proposition has a significant effect on the result
of the inference.

T im e  /  m in
    (p a s t )

M e m b e rs h ip  d e g re e

1

246

fe w _ m in u te s _ a g o

t e

T im e  /  m in
    (p a s t )

T e m p e ra tu re  (° C )

1 5 0

246 t e

1 2 0

a )

b )

Figure 3. a) The membership function for few_minutes_ago, b) the motor temperature
curve for the example motor.

Consider the example rule motor WAS warm few_minutes_ago. We need the history of
temperatures of the motor in question, in order to be able to evaluate the rule. After
fixing the evaluation time te, the definition area of the membership function of
few_minutes_ago defines the time window, inside which we need to know the motor
temperature. Let us consider an example where te is fixed (Fig. 3a and 3b). As you can
see, the temperature value changes at te - 5 min when it drops from 150 °C to 120 °C.
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Now, by combining the two diagrams above, we will get temperature areas for the
evaluation of the membership function few_minutes_ago:

T im e  /  m in
    (p a s t)

M e m b e rsh ip  d e g re e

1

246

fe w _ m in u te s_ a g o

t e

a 6 ,5

a 5 ,2

T o ta l  a re a  ( ta )  =  a 6 ,5  +  a 5 ,2

Figure 4. Temperature areas for the fixed example.

In the figure above, ‘a’ stands for area. So, a6,5 is the area bounded by x-axis, the mem-
bership function segment and the line x = 5. Let us consider again the proposition motor
WAS warm few_minutes_ago. At first, look at the time window (te - 6, te - 5). We can
compute the partial truth of the proposition inside that window with X1 =
µwarm(150)*(a6,5 / ta), where ‘ta’ stands for total area bounded by the membership func-
tion and x-axis. Similarly, the partial truth of the proposition inside the window (te - 5,
te - 2) would be X2 = µwarm(120)*(a5,2 / ta). If the membership function for the term
warm would give µwarm(150) = 0.3 and µwarm(120) = 0.6 then X1 = 0.3*(1/8) = 0.0375
and X2 = 0.6*(7/8) = 0.525.

We have now truth values for separate time windows inside the definition area of the
membership function few_minutes_ago. To get the final truth value of the proposition
motor WAS warm few_minutes_ago we simply take the arithmetic sum of the partial
truth values. So truth(motor WAS warm few_minutes_ago) = 0.0375 + 0.525 = 0.5625.

Formally we can express the temporally restricted fuzzy proposition “A be B T”

truth(A be B T) = µB i i

i i
T

Tmeas A
a

ta
i T( ( )) * ( ) ,,

,
+

+







 ∀ ∈∑ 1

1
(5.1)

where meas Ai j( ), means the value of the variable A inside the time window (i, j).

ai j
T
, declares the area bounded by the lines  x = i, x= j and the membership function T.

taT is a total area bounded by the function T and x-axis.

5.2 Unified framework

We have now three different concepts, which can be used to restrict a fuzzy result of a
fuzzy inference using fuzzy rules. These are:

• fuzzy qualifiers, like hot, strong and high,

• fuzzy quantifiers, like few, most and almost_all,

• fuzzy temporal restrictors, like lately and few_minutes_ago.
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We know how to evaluate a fuzzy proposition with fuzzy qualifier. We have introduced
a method to evaluate fuzzy propositions with fuzzy quantifiers. We have also intro-
duced a method to evaluate fuzzy propositions with fuzzy temporal restrictors. Now we
need an evaluation method to calculate a fuzzy proposition with fuzzy quantifier and
fuzzy temporal restrictor (e.g., the proposition most motors WERE hot
few_minutes_ago). Formally, the combined fuzzy proposition can be expressed like
this: “Q A’s be B T” where Q is a fuzzy quantifier, A is a set of entities, B is a fuzzy
qualifier and T is a fuzzy temporal restrictor. We can use a modified relative sigma
count (ρ) (already presented in Section 3) to evaluate the first stage of the evaluation
process of the above proposition.

ρT = Count BT A( / )∑ =
Count BT

Card A

( )

( )

∑
(5.2)

The sigma count of BT = Count BT( )∑  is defined as the arithmetic sum of the member-

ship degrees of the elements of BT. With temporally restricted proposition those mem-
bership degrees are calculated using the formula 5.1.

The final result of the proposition “Q A’s be B T” is given by the formula µQ(ρ
T).

Example: Let us evaluate the fuzzy proposition most motors WERE hot
few_minutes_ago. Motors and their temperatures are listed in the following tables:

motor1 ts temp
16:00:00 100
16:00:01 110
16:00:02 120
16:00:03 130    

motor2 ts temp
16:00:00 130
16:00:01 140
16:00:02 140
16:00:03 140    

motor3 ts temp
16:00:00 140
16:00:01 150
16:00:02 140
16:00:03 130

The fuzzy quantifier most: TRIANGULAR (0.6, 0.8, 1.0).

The membership function few_minutes_ago: TRIANGULAR (2, 4, 6).

The linguistic variable hot: TRAPEZOIDAL (120, 140, 300, 300).

The evaluation time te of the proposition is fixed to be 16:00:06.

At first, we have to calculate the truth of motor WAS hot few_minutes_ago for each
motor separately using the formula 5.1:

Motor1: (µhot(100)*(1/8)) + (µhot(110)*(3/8)) + (µhot(120)*(3/8)) + (µhot(130)*(1/8))
=  0*(1/8) + 0*(3/8) + 0*(3/8) + 0.5*(1/8) = 0 + 0 + 0 + 0.0625 = 0.0625

Motor2: (µhot(130)*(1/8)) + (µhot(140)*(3/8)) + (µhot(140)*(3/8)) + (µhot(140)*(1/8))
= 0.5*(1/8) + 1*(3/8) + 1*(3/8) + 1*(1/8) = 0.0625 + 0.375 + 0.375 + 0.125 = 0.9375

Motor3: (µhot(140)*(1/8)) + (µhot(150)*(3/8)) + (µhot(140)*(3/8)) + (µhot(130)*(1/8))
= 1*(1/8) + 1*(3/8) + 1*(3/8) + 0.5*(1/8)} = 0.125 + 0.375 + 0.375 + 0.0625 = 0.9375

The proportion of motors, which were hot few minutes ago:
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ρT = 65.0
3

9375.1

3

9375.09375.00625.0 ≈=++
(5.3)

Finally, the truth of the complete proposition most motors WERE hot few_minutes_ago
is computed µQ(ρT) = µmost(0.65) = 0.25

5.3 Temporal fuzzy reasoning in RapidBase

In RapidBase, we have implemented temporal fuzzy reasoning model presented above
with one limitation: Currently, the measurement values are treated as one set. They are
not grouped according to the real-world entities, like motors they correspond to. In the
example above, this means that we have to process motor temperatures as a single set of
values and not as three separate sets.

In RQL, we define a temporal restrictor type similarly to a linguistic type. For an exam-
ple of such a definition, see the Appendix (example 8). To see a rule set with quantified
and temporally restricted rule propositions, check the example 9 in the Appendix.

6 Implementation

The RapidBase Server is a C++ program that can be run on Windows NT, HP UNIX
and Linux. The Server runs as a single operating system process. The overall architec-
ture of the Server is presented in Fig. 5.
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Figure 5. The RapidBase Server architecture.

The arrows shown in the figure illustrate the interaction between the sub-systems of the
Server in trigger processing. A data manipulation command arrives from the network
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and is passed to the interpreter for processing (A) and this, subsequently, results in ele-
mentary data requests executed by the Database Engine (B). A trigger is fired upon de-
tection of a pre-defined event (a database event 1a or a timer event 1b). If there is a
condition associated with the fired trigger, a stored predicate is invoked (2). The predi-
cate uses the services of the Database Engine (3) to get the current data for the
predicate evaluation. If a rule set call is specified, in the predicate, the corresponding
rule set is invoked (4) with the necessary input data. The defuzzified rule set call result
is returned to the predicate, which, in turn, returns the predicate evaluation result to the
Trigger Manager. If the trigger condition is satisfied, the trigger actions are requested
(5).

7 Performance

In this section we concentrate on the performance of the RapidBase Server and espe-
cially we address the efficiency of the inference engine of the Server. The test equip-
ment used was an Intel Pentium III (533 MHz) PC running the Windows NT operating
system. The whole database was fitted the main memory in order to avoid the virtual
memory page swapping.

We forced updates as fast as possible to a history column of a table which resulted in
about 3000 data updates per second. This means that one update took about 0.34 milli-
seconds to complete. The update time is taken into account when evaluating the infer-
ence engine efficiency. It is done by subtracting the update time from the average time
used to process an update command activating the rule inference process. To avoid the
influence of action execution on performance results, we also set the parameters of each
test configuration to force no trigger action execution. We used only C-fuzzy triggers
because both C- and CA-fuzzy triggers utilize the same inference engine, so the per-
formance of the two in the sense of fuzzy inference is the same.

We ran tests with different type of rule propositions: 1) plain fuzzy proposition (e.g.,
motor IS hot), 2) quantified fuzzy proposition (e.g., most motors ARE hot) and 3)
quantified-temporal fuzzy propositions (e.g., most motors HAVE BEEN hot lately).
Each rule premise consisted of two propositions, connected with the AND operator. To
show the effect on the performance caused by the rule set size, we used the rule sets of
2, 8 and 32 rules for each configuration. We varied also the quantified set size (10 and
100 entities) for quantified and quantified-temporal rules. Fig. 6 shows the results of the
tests.
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Figure 6. Execution time of fuzzy inference. Categories: P=Plain fuzzy proposition,
Q= Quantified fuzzy proposition and QT=Quantified-temporal fuzzy proposition.
The number in the category name states the size of the quantified set.

The increase in the size of a rule set does not have significant effect on the performance
of the inference process of a plain (P) fuzzy rule (2 rules = 0.17 ms, 32 rules = 0.26
ms). For quantified (Q) and quantified-temporal (QT) rules the size of the rule set has a
linear effect on the inference time: Increasing the rule set size by four times increases
the evaluation time also about four times. Increasing the size of the quantified set (of
values) has the same effect on the inference time.

8 Conclusions

We have demonstrated how an active database can be applied to active monitoring. Es-
pecially, by adding fuzzy inference capabilities, it is possible to increase the power of
an expression of database triggers so that they are suitable to capture complex intuitive
models in a concise form. Two new fuzzy instruments are introduced: fuzzy quantifiers
and fuzzy temporal restrictors. Fuzzy quantifiers enable one to state set-oriented propo-
sitions that are a necessity in processing of huge measurement databases. Fuzzy tempo-
ral restrictors allow to restrict the propositions to various intervals and time points in
the measurement history. The implementation of fuzzy mechanisms in RapidBase is
also presented, together with the related performance figures.
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Appendix

This appendix contains the RQL commands used as examples in the paper.

(1) CREATE LINGUISTIC TYPE Temperature INTEGER (
low TRAPEZOIDAL (0, 0, 80, 100),
normal TRIANGULAR (80, 110, 140),
hot TRAPEZOIDAL (120, 140, 300, 300)

)

(2) CREATE LINGUISTIC TYPE Severity INTEGER (
alarm_none TRAPEZOIDAL (0, 0, 0.5, 1),
alarm_low TRAPEZOIDAL (0.5, 1, 1.5, 2),
alarm_medium TRAPEZOIDAL (1.5, 2, 2.5, 3),
alarm_high TRAPEZOIDAL (2.5, 3, 4, 4)

)

(3) CREATE RULE SET ControlAlarm
(temperature Temperature, torque Torque)
Severity DEFAULT alarm_none (
IF temperature IS hot AND torque IS medium THEN alarm_low,
IF temperature IS hot AND torque IS high THEN alarm_medium

)

(4) CREATE TRIGGER MotorTemperature
UPDATE OF hist.temp ON motors
WHEN ControlAlarm(hist.temperature, hist.torque) > 2
DO CALL HighTemp@Actions USING hist.temperature, hist.torque

(5) CREATE OR REPLACE TRIGGER MotorTemperature
UPDATE ON motors
DO INFER FROM ControlAlarm(hist.temperature, hist.torque)
ACTIONS
(

WHEN alarm_low DO CALL alarmLow@actionServer,
WHEN alarm_medium DO CALL alarmMed@actionServer,
WHEN alarm_high DO CALL alarmHigh@actionServer

)

(6) CREATE RELATIVE QUANTIFIER TYPE Amounts FLOAT (
few TRAPEZOIDAL (0, 10, 30, 40),
many TRAPEZOIDAL (30, 50, 70, 80),
most TRAPEZOIDAL (70, 80, 100, 100)
)

(7) CREATE OR REPLACE RULE SET ControlAlarm
(motor_temps Temperature COLLECTION QUANTIFIED WITH Amounts)
Severity DEFAULT alarm_none (
IF many motor_temps ARE hot THEN alarm_low,
IF most motor_temps ARE hot THEN alarm_high
)

(8) CREATE TEMPORAL RESTRICTOR TYPE minute_based_restr MINUTE (
few_minutes_age TRIANGULAR (2, 4, 6),
several_minutes_agoTRIANGULAR (4, 10, 16),
long_time_ago TRIANGULAR (10, 16, 100, 100)
)

(9) CREATE OR REPLACE RULE SET ControlAlarm
(motor_temps Temperature HISTORY QUANTIFIED WITH Amounts
TEMPORALLY RESTRICTED WITH minute_based_restr)
Severity DEFAULT alarm_none (
IF most motor_temps HAVE BEEN hot few_minutes_ago THEN alarm_low,
IF most motor_temps HAVE BEEN hot several_minutes_ago THEN alarm_medium
)


