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Abstract

Triggers (active rules) bring domain-specific reactive behavior to data-
bases. Traditional Event-Condition-Action triggers use only crisp concepts.
In this paper, fuzzy triggers are proposed whereby approximate reasoning
may be integrated with a traditional crisp database. The new approach
paves the way for intuitive expression of application semantics of imprecise
nature in database-bound applications. Several levels of applying fuzzy
concepts to triggers are proposed. Fuzzy propositions may be
incorporated, as elementary predicates, in Boolean trigger conditions. A
significant improvement of the condition expression power is achieved by
encapsulating a set of fuzzy rules into a Boolean-valued function called the
rule set function. Subsequently, actions are expressed also in fuzzy terms,
in a trigger model. Examples are provided to illustrate how fuzzy triggers
can be applied to a real-life drive control system in an industrial
installation.

Espoo, November 1996
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I. Introduction

Active databases which incorporate Event-Condition-Action rules into the conventional (passive) databases
have been investigated by many researchers over the past decade [VK91, PDW+93, DHW94, FT95, CW96b].
They provide the capability to react to database (and possibly external) stimuli, called events, without user
intervention. The most predominant direction of the previous research has been the development of knowledge
and execution models and the investigation of architectural issues (see [CW95a, p. 303-324] for a reference
list). Another research direction is characterized by intersection of other research fields, for instance temporal
or real-time databases, and active databases [BH95, RSS+96]. We are investigating another possibility: how to
incorporate the fuzzy logic paradigm into active databases.

Fuzzy logic [Zad65] deals with statements that can be true to a certain degree: the values are between 1
(completely true) and 0 (completely false). Thus, an objective of fuzzy logic (FL) is to provide a systematic
basis for representing imprecision and/or uncertainty. Another objective of FL is to mimic the ability of the
human mind to effectively employ modes of reasoning that are approximate rather than exact. Nowadays,
applications of fuzzy logic are found in many fields [MJ94] including artificial intelligence (e.g., expert
systems), databases (e.g., information retrieval), robotics, pattern recognition, decision analysis, diagnostics, etc.

Applying fuzzy logic to databases has been an active research area since the 80’s [DEB89, VSC+89,
Pet96]. The most important issues which have been addressed are i) the enhancement of existing data models
for representing uncertain and/or imprecise data (fuzzy data), ii) the extension of current database languages
(e.g., SQL) to handle fuzzy queries, and iii) the use of fuzzy inference to deduce answers to questions in fuzzy
expert database systems [ZK84, Zem89, LWL89].

To our best knowledge, no attention has been paid until now on integrating imprecision and/or
uncertainty within database triggers. Similar work has been addressed in the context of fuzzy expert systems
[Zad84, Zad89]. Zadeh noted that since most expert’s knowledge is fuzzy, most of its facts and rules are
fuzzy. Typically, a knowledge base is built through consultations with human experts, whose expertise and
knowledge are invariably imprecise, incomplete, or not totally reliable. Existing expert systems, he noted,
ignore the fuzziness of such information. Fuzzy expert systems allow fuzziness of antecedents and/or
consequents in the rules of the form “if X is A then Y is B” where “X is A” and “Y is B” are fuzzy
propositions. Fuzzy modifiers and quantifiers can be used in the antecedent and/or consequent of a rule. In
addition, fuzzy expert systems are based on approximate reasoning [GKB+84]. Approximate reasoning deals
with inference under imprecision and/or uncertainty in which the underlying logic is approximate rather than
exact.

The main idea behind our work is similar in spirit to the one considered in the context of fuzzy expert
systems1. It is widely accepted that the volume of data stored in databases is ever-increasing. This
phenomenon, referred to as “information explosion”, characterizes many applications. Tools are needed to
transform these data to useful information that enables users to make decisions. The work presented in this
paper was originally driven by the requirements of a real application domain which was a paper machine drive
control system. Users wanted a single mechanism which integrates two of their needs. First, they wanted to
have the ability to use data in a fuzzy manner which is close to their thinking. On the other hand, they wanted
to be warned when the database reach situations of interests, for example to avoid failures of the drive system.
Thus, merging fuzzy logic features and active database capability is just a natural step to go on.

The incorporating of imprecision and/or uncertainty within database triggers may concern the event, the
condition or the action components of an active rule or all together. We will not elaborate further on the

1 Note that several active database features have been adopted from production rule systems [BD83].
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specific semantics of different possible dimensions expressing the behavior of active database systems
[PDW+93, FT95]. The contribution of this paper is twofold:

 • The presentation of a simple approach of integrating fuzzy rules and fuzzy inference with database
triggers. The purpose is to highlight how a conventional active database system can be easily
extended with fuzzy concepts.

 • The development of more general fuzzy trigger models which focus on the definition of fuzzy
actions and fuzzy events. The purpose of these models is to identify further levels of integrating
fuzzy concepts with active rules.

The condition component of a conventional active rule specifies what must be checked once the rule is
triggered and before the action is executed [WC96a]. A condition is a predicate, like the SQL where-clause, on
the database state. However, existing active rule languages do not consider fuzzy predicates which provide a
higher level of abstraction than crisp conditions. Fuzzy predicates are based on terms like young, rich, high,
tall, etc. which allow the representation of vagueness. In addition, fuzzy predicates can be used in fuzzy rules
leading to application of fuzzy inference [Zad89]. We propose to embed fuzzy predicates and fuzzy rules
within the Boolean-valued trigger condition. Model of such a trigger, called a C-fuzzy trigger, is presented in
Section 3.

A fuzzy action, in the context of fuzzy databases (which store fuzzy data), is based on data manipulation
operations on fuzzy attributes. However, fuzzy databases are not widely used, so we assume conventional (non
fuzzy) databases in this work. A fuzzy action, defined by a linguistic term, can be fired partially and the
decision to execute an action is based on an approximate reasoning process which aggregates the overlapping
of elements of fuzzy actions. The corresponding CA-fuzzy triggers is proposed in Section 4.

Notes on implementations are presented in Section 5. We conclude by underlying some open research
problems.

I. Basic concepts of fuzzy sets and possibility theory

This section introduces basic concepts of fuzzy sets and possibility theory [Zad65, Zad78, DP88]. Informally,
a fuzzy set is a set with imprecise boundaries in which the transition from membership to non-membership is
gradual rather than abrupt. In this way, a fuzzy set F in a universe of discourse U is characterized by a
membership function μF, which associates each element u ∈ U with a grade of membership μF(u) ∈[0, 1] in
the fuzzy set F. Note that a classical set A in U is a special case of a fuzzy set with all membership values
μA(u) ∈{0, 1}.

A. Linguistic variables

Linguistic variables are variables whose values are not numbers but words or sentences in a natural language.
A linguistic variable is usually decomposed into a set of terms (linguistic values). Let us consider a fuzzy set A
of people whose age belongs to the interval [0, 120], a linguistic variable Age which is decomposed into a set of
linguistic values, denoted by T, such as T(Age) = {Young, Middle-aged, Old}. The meaning of such values is
defined by their membership function (Fig. 1.) :

μYoung = Trapezoidal(0, 0, 20, 30)

μMiddle-aged = Trapezoidal(25, 30, 40, 45)
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μOld = Trapezoidal(40, 60, 120, 120 )

Figure 1. Membership functions of the linguistic variable Age.

For example, if John is 22 years old then the membership degree to the fuzzy subset Young is equal to 0.7.
The fuzzy proposition is then represented by “Age(x) is Young”, x ∈ A, which truth is matter of degree.

A. Fuzzy operations

Fuzzy logic provides operations, that act on fuzzy sets, that are counterparts of those which act on crisp sets.
Fuzzy set operators for union, intersection, equality, and complementation are defined as follows:

Union: The union (A∪B) of two fuzzy
sets is defined as
μA∪B(x)= max (μA(x) , μB(x)) ∀ x ∈ U

Intersection: The intersection (AÔB) of
two fuzzy sets is defined as

μAÔB(x)= min(μA(x) , μB(x)) ∀ x ∈
U

Equality: Two fuzzy sets A and B are
equal iff μA(x) = μB(x) ∀ x ∈ U

Complement: A´ is complement of A iff
μA´(x)= 1 - μA(x) ∀ x ∈ U

A. Quantifiers and modifiers

Classical logical systems use two quantifiers: universal and existential. Fuzzy logic, as for it, admits a wide
variety of fuzzy quantifiers exemplified by few, several, usually, most, about ten, etc. Fuzzy propositions with
quantifiers belong to one of the two following classes:
1. “Q X’s are A” means Q elements of a set X are satisfying the fuzzy predicate A. For example, “most

basketball-players are tall” where tall is a linguistic value defined by a membership function.
2. “Q X’s B are A” means Q elements of a set X which satisfy the fuzzy predicate B also satisfy the fuzzy

predicate A. For example, “most young employees have a small salary” where young and small are
linguistic values defined by membership functions.

Linguistic hedges or modifiers provide a means to modify membership functions to apply more, or less,
stringent criteria to the fuzzy set membership functions. In other words, they affect the membership functions
by intensifying (concentrating) or spreading (dilating) its shape. Terms such as very, extremely, somewhat,
more-or-less, quite are examples of modifiers.

A. Possibility distribution

Possibility theory is based on fuzzy set theory and it provides a unified framework to deal with information
both imprecise and/or uncertain [Zad78, Zad89, DP88, BP93]. A concept which plays a central role in
possibility theory is that of a possibility distribution. If X is a linguistic variable taking values in a universe of
discourse U, then the possibility distribution of X, ΠX, is the fuzzy set of all possible values of X. More
specifically, let “X is F” be a fuzzy proposition where F is a fuzzy set defined by a membership function μF,
then the possibility distribution ΠX, is equal to F. The equation “ΠX= F” means that the degree of possibility
which the given variable X takes u as a value is equal to the membership value of u in the fuzzy set F, i.e.

ΠX(u)= μF(u) ∀ u ∈ U
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For example, if we know only that “John is young” (but not his precise age), where the meaning of Young is
described by a membership function μyoung, the possibility that the age of John takes u is defined as follows:
ΠAge(John)(u)= μyoung(u) ∀ u ∈  Dom(Age).

A. Fuzzy inference

A fuzzy implication is viewed as describing a fuzzy relation between the fuzzy sets forming the implication
[MJ94]. A fuzzy rule, such as “if X is A then Y is B” is implemented by a fuzzy implication (fuzzy relation)
which has a membership function μA→ B(x, y) ∈ [0, 1]. Note that μA → B(x, y) measures the degree of truth of

the implication relation between x and y. In control applications, Mamdani implication (minimum) is one of
the most commonly used interpretation for the implication and it is defined as:

μA → B(x, y)= min[μA(x), μB(y)]

Note that this implication is chosen because it traduces the cause and effect relationship [Men95]. In the case
of active databases, the Condition-Action components of an active rule traduces also a cause and effect
relationship.

In fuzzy logic, Modus Ponens is extended to Generalized Modus Ponens in the following manner: if “X
is A*” and  “if X is A then Y is B” then “Y is B*”. The membership function of the conclusion, the fuzzy
set B*, is defined as follows [Zad84]:

μB*(y)= maxx∈A*[μA*(x) ∧ μA → B(x, y)]

Generalized modus ponens has been adapted and used widely in control applications; the mechanism is called
interpolative reasoning. This mechanism is needed for applications for which the input-output relationships is
described by a collection of fuzzy if-then rules. In addition, Interpolation serves to minimize the number of if-
then rules [Zad89]. Let us consider a rule base (where X, Y and Z are linguistic variables):

Ri: if X is Ai and Y is Bi then Z is Ci  i = 1..n

and given the input fact (x0, y0), the goal is to determine the output “Z is C*”. A fuzzy logic system uses the
following steps to achieve this goal:

1. Fuzzification:

The fuzzifier maps the input data x’ = x0 ∈ U into a fuzzy set A*. The most widely used fuzzifier is a fuzzy
singleton defined by:

μA*(x) = 1 if x = x’, ∀ x ∈ U

μA*(x) = 0 if x ≠ x’

When the fuzzy input set A* only contains a crisp element x’, (1) becomes:

μB*(y)= 1 ∧ μA → B(x’, y)= μA → B(x’, y) (2)

1. Interpolative reasoning (e.g., the Max-Min Inference method):

The truth value for the premise of each rule is computed, and applied to the conclusion part of each rule. The
membership functions defined on the input variables are applied to their actual values to determine the degree
of truth for each rule premise. The degree of truth for a rule’s premise is sometimes referred as its alpha. It is
computed as follows:

αi = μAi and Bi(x0, y0) = min(μAi(x0) , μBi(y0))

If a rule’s premise has nonzero degree of truth then the rule is activated. The second step is to find the output,
C’i, of each of the rules:
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μC’i (w)= μ(Ai and Bi)→Ci(x0, y0, w), ∀ w ∈ W

In Min inferencing (or Mamdani implication rule) the implication is interpreted as a fuzzy and operator:
μC’i (w)= μ(Ai and Bi)→Ci(x0, y0, w), ∀ w ∈ W

= μAi and Bi(x0, y0) and μCi(w) = min(μAi and Bi(x0, y0), μCi(w))

In the composition subprocess, all fuzzy subsets assigned to each output variable are combined together to
form a single fuzzy subset for each output variable. The purpose is to aggregate all the individual rule outputs
to obtain the overall system output. In the Max composition, the combined output fuzzy subset C* is
constructed by taking the maximum over all of the fuzzy subsets assigned to the output variable by the
inference rule:

μC*(w)= max(μC’1(w), μC’2(w),.... , μC’n (w))

1. Defuzzification:

The result of the fuzzy inference system is a fuzzy set. The defuzzyfication step produces a representative crisp
value as the final output of the system. There are several defuzzification methods [Men95], for example the
Centroid (Center-of-gravity) defuzzifier provides a crisp value based on the center-of-gravity of the result (the
output fuzzy set).

I. C-fuzzy triggers

In this section we propose a trigger model incorporating fuzzy predicates and the interpolative reasoning
technique introduced above, in the process of the evaluation of the condition part of an ECA trigger. We are
calling such triggers C-fuzzy triggers (or Condition-fuzzy ECA triggers). Fuzzy predicates add a higher-level
abstraction to triggers. Besides incorporating approximate reasoning within triggers, the interpolative
mechanism could be useful to reduce the proliferation of triggers which can affect the performance of the
system. In addition, the execution model of C-fuzzy triggers can be easily implemented, as existing fuzzy
inference tools can be used.

A. The basic ECA trigger condition model

We assume simple ECA trigger execution model ([WC96b], p. 17). In algorithmic terms, it consists of three
consecutive calculations performed when an event occurs:

a) detecting of an event and finding of a relevant trigger,

b) evaluating the condition and

c) executing the action if the condition is true.

The above algorithmic components are briefly called the event, condition and action parts, respectively.
Let ei  be an event occurring at time ti. The event time is atomic and no two events can occur at the same

time point. The time of the preceding event, ei-1, can be thus denoted by ti-1. The database state, after an event ei

has occurred, is the current sate Si and the state before the event occurred—the previous state Si-1.

The condition C evaluated at time ti is a Boolean predicate defined over the current and the previous states:

Cti
: Si × Si −1{ }→ 0,1{ }
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The condition may be represented as an expression composed of predicates, elementary predicates and
Boolean operators AND, OR and NOT, and  parentheses for precedence.

A typical elementary predicate is a comparison predicate defined over all the database values in the
predicate domain, the comparison connectors and legal literals:

CPti
: VAL × COMP × LIT{ }→ 0,1{ }, such that:

CP(val ,comp,lit ) = 1 if  val comp lit is true
CP val, comp, lit( ) = 0 if  val comp lit is false

where val ∈VAL  is a value (e.g. of a data item) defined over Si or Si-1, comp ∈COMP  is a comparison
connector like = , >, <, etc., and lit ∈ LIT  is a literal. In typical trigger implementations, val is limited to an
expression defined over items of the database object the event is related to, like a row in a table, in a relational
database. Aggregate functions are usually disallowed for performance reasons [WC96a].

A. Incorporating fuzzy predicates

We extend the conventional condition model by introducing a new type of a (Boolean) elementary predicate
expressed as a fuzzy predicate. A fuzzy predicate, such as (X is A) applies the fuzzy term A to the linguistic
variable X. The evaluation of the fuzzy predicate is based on the computation of a degree of match. A degree of
match, between a current value v and a fuzzy proposition (X is A), is defined as a membership degree of v
belonging to the fuzzy set A. Then, if the degree of match is greater than zero (i.e. μA(v)>0) then the predicate
evaluation returns true, otherwise false. For example, the following statement on a motor “the temperature of a
motor m1 is high” can be expressed by the following fuzzy predicate:

Temperature(m1) is High

Let us assume the current temperature of m1 is t. The evaluation of this predicate is as follows: a degree of
match, between the current temperature and the fuzzy proposition, is computed. If μHigh(t)>0, the predicate
returns true.

A more complex fuzzy proposition could be defined using the where-clause of a fuzzy database query
language (e.g., SQLf [BP95]).

A. Interpolative condition model

In order to utilize the expressive power of fuzzy rules and to apply fuzzy inference to the trigger condition part,
we propose a special function called the rule set function (RSF) in the comparison predicate:

RSFt : R × Si ×Si −1{ }→ D

where R is a set of fuzzy rules (fuzzy implications), each of which is in the form:

if FP then FC

where FP is a fuzzy antecedent  (predicate)  and FC is a fuzzy consequent [Zad89]. FP is constructed from
fuzzy propositions

qx X IS|ARE ax

connected by fuzzy operators and, or and not. X is a linguistic variable representing a database value fuzzyfied
using the terms (and the corresponding membership functions) in the term set Ax, ax ∈Ax . The optional fuzzy
quantifier qx ∈Qx  (Qx is a set of quantifier  terms of X) may be also used.

FC is in the form:
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Y IS by

where Y is the consequent linguistic variable (the same one occurring in all the fuzzy rules in R) and by ∈By  is

a term of the consequent variable.
The range of RSF, D, is a domain (universe of discourse) of the linguistic variable Y. Thus, RSF yields a

value which can be used in a regular comparison predicate evaluating, in turn, to true or false.
An example of a fuzzy rule (without quantifiers) may be the following:

if temperature IS high AND pressure IS very_high
then alarm IS very_high

where temperature and pressure are linguistic variables representing fuzzified values of the crisp data items,
for example "temp" and "press", and alarm represents an output value of the rule set function.

Fuzzy quantifiers, although not much used in control applications, are very relevant in a database
environment where we naturally maintain various structured sets of data (like tables, classes, collections,
extensions, etc.). An example of applying a quantifier most to a rule could be:

if most motors ARE hot AND temperature IS rising
then set_alarm IS high

The evaluation of the rule set function is as follows:

1) the linguistic variables in the antecedent part of the rules are evaluated, i.e. the corresponding source
data are fuzzyfied (we are assuming no fuzzy values are stored in the database),

2) the interpolative reasoning method, for example the Max-Min method, is applied to rules, producing
a fuzzy conclusion,

3) the conclusion is defuzzified using, for example, the Center-of-gravity method to yield the crisp
function value which is then applied to the comparison predicate.

In addition to being able to define rule set functions, one must be able to define linguistic variables and the
corresponding terms, in the system.

A. Example: how to generate an overheating alarm in a drive system

The following example is based on the case study provided by ABB Industry Oy, a manufacturer of complex
drive systems for industrial installations. The example pictures a paper machine equipped in tens of high-
power electric motors running at different speeds and loads. The problem we are illustrating here is how to
generate a synthetic alarm information about motor overheating in a system like that. A serious overheating of
a single motor may be a cause for an alarm to the same extend as a moderate overheating of a number of
motors. It is required to have alarms reported at different intensity levels (say from 1 to 4)  depending on the
seriousness of the situation. The dynamics of the system has also to be taken into account, i.e. the fact of the
rising temperature implies a higher alarm level than that of the decreasing temperature. We shall show how this
complex task can be achieved by way of just one C-fuzzy trigger. The syntax of the prototype language
RQL/F (RapidBase Query Language/Fuzzy) is used in this example (see implementation notes in Section 6).

Assume that all the relevant motor measurement data are stored in a single (possibly temporal) table
having the following schema:

motor( motorId, temp, deltaTemp )
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where temp is the measured values of the motor's temperature and the derived column deltaTemp represents the
difference between the current and the previous temperature reading,  normalized by diving by the previous
reading.

In order for membership function definitions to be reusable in a database, the concept of a linguistic type is
introduced. A linguistic type embodies a set of compatible terms to be applied to various linguistic variables.

The following linguistic types are used to represent fuzzified values of temperature:

CREATE LINGUISTIC TYPE Temperature INTEGER(
normal TRAPEZOIDAL (0, 0, 120, 140),
hot TRAPEZOIDAL (120, 140, 300, 300),
very_hot TRAPEZOIDAL (145,160, 300, 300)

)

The next one is a general linguistic type to deal with values whose interesting value range is [0, 1]:

CREATE LINGUISTIC TYPE NegativeToPositive FLOAT(
negative TRAPEZOIDAL (-1, -1, -0.4, -0.2),
big_negative TRAPEZOIDAL (-1, -1, -0.8, -0.6),
small_negative TRAPEZOIDAL (-0.8, -0.6, -0.4, -0.2),
zero TRAPEZOIDAL (-0.4, -0.2, 0.2, 0.4),
small_positive TRAPEZOIDAL (0.2, 0.4, 0.6, 0.8),
big_positive TRAPEZOIDAL (0.6, 0.8, 1, 1),
positive (0.2, 0.4, 1, 1)

)

The last linguistic type will be used to represent the alarm severity level:

CREATE LINGUISTIC TYPE AlarmSeverity FLOAT(
none TRAPEZOIDAL (0, 0, 0.5, 1.0),
low TRAPEZOIDAL (0.5, 1.0, 1.5, 2.0),
medium TRAPEZOIDAL (1.5, 2.0, 2.5, 3.0),
high TRAPEZOIDAL (2.5, 3.0, 4.0, 4.0)

)

Fuzzy quantifiers are also classified as types:

CREATE QUANTIFIER TYPE Amounts (
few TRAPEZOIDAL (0, 0, 20, 30),
some TRAPEZOIDAL (20, 30, 60, 70),
most TRAPEZOIDAL (60, 70, 100, 100)

)

Quantifiers may be applied to value sets yielding fuzzy quantified sets. The first one is a set of motor
temperatures:

CREATE VALUE SET motorTemperatures OF
( SELECT temp FROM motor)

and the second one is a set of temperature deltas:

CREATE VALUE SET motorTempDeltas OF
( SELECT deltaTemp FROM motor )

Now, a rule set is defined. The rule set definition has the form of a function taking parameters and returning a
crisp value. In the following definition, the rule set OverheatingAlarmLevel takes two quantified set parameters
of types motorTemperatures and motorTempDeltas, respectively, it uses the membership functions of linguistic
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type AlarmSeverity in the rule consequent, and it returns the default (defuzzified) value of none  if no rule is
fired:

CREATE RULE SET OverheatingAlarmLevel (
motors Temperature QUANTIFIED WITH Amounts,
deltas NegativeToPositive QUANTIFIED WITH Amounts

)
AlarmSeverity DEFAULT none (

IF some motors ARE hot
AND most deltas ARE big_positive
THEN low,

IF some motors ARE very_hot
AND some deltas ARE big_positive
THEN low,

IF some motors ARE very_hot
AND most deltas ARE big_positive
THEN medium,

IF most motors ARE hot
AND some deltas ARE big_positive
THEN medium,

IF most motors ARE hot
AND most deltas ARE big_positive
THEN high,

IF most motors ARE very_hot
THEN high

)

The above rules set evaluates to a float-valued alarm level based on the amount of overheated motors, the
degree of overheating and the speed of the temperature change. The rule set can be now applied to a trigger
definition like the following:

CREATE TRIGGER OverheatingTrigger
AFTER UPDATE OF temp ON motor
WHEN (OverheatingAlarmLevel (motorTemperatures,

motorTempDeltas) > 1.5) (NotifyTempAlarm@Alarms)
SEND RULE RESULTS

The above trigger is fired on each UPDATE on table motor, and the rules set is evaluated. If the comparison
predicate yields true, the action named NotifyTempAlarm() is invoked in the action handler process Alarms. Note
that, in the underlaying RapidBase architecture, actions are external and detached [WKP96]. The action
requests are satisfied by arbitrary handler programs executing in their own process space.1 The clause SEND
RULE RESULTS causes the defuzzified rule set result to be send, as an action parameter, along with the action
request, to the action handler process.

I. CA-fuzzy triggers

So far we have considered C-fuzzy triggers which extend the conventional condition part of regular triggers to
include fuzzy predicates and encapsulate fuzzy inference. The next step is to introduce fuzzy actions and to
integrate them with the condition part more tightly. Such a trigger, called a CA-fuzzy trigger, may be built by
embedding action specifications in fuzzy rules. CA-fuzzy triggers provide another dimension to the causality
in active databases. Whereas the cause-and-effect between the condition and the action part of a regular trigger
(C-fuzzy trigger) is a matter of yes/no, it is a matter of degree in CA-fuzzy triggers.

1 Accordingly, the syntax of the action part of the trigger definition is: <action-name>@<process-name>.
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A CA-fuzzy trigger can be symbolically represented as E(CA)*, meaning that an event fires the

evaluation of n (nÚ1) fuzzy if-then rules having a fuzzy antecendent and a fuzzy action concequent.

A. Condition-Action model

In this model, the cause-effect relationship between the database state and the concrete (implemented) actions is
expressed as a fuzzy rule set in the form:

if FP1 then FA1

if FP2 then FA2

...
if FPn then FAn

where FPi is a fuzzy predicate in the form proposed for C-fuzzy triggers and FAi is a fuzzy action proposition
represented as:

Z is zi

Where Z is a linguistic variable such that T(Z) = {z1, z2, ... zn}. There also exists a set of concrete actions A =
{a1, a2, ... an} of which each ai (i = 1, 2, ... n) may be implemented, in a real system, as a distinct  procedure—a
database command (or sequence thereof) or an external procedure. The sets Z and A are said to be mapped to
each other if zi is associated with ai, for each  i = 1, 2, ... n..

Thus, a linguistic term zi denotes a fuzzy action and it is uniquely associated with a concrete action. All
the membership functions of Z are defined over the same arbitrary domain where the relationships  among the
fuzzy actions are captured.

For example, in Fig. 2, the fuzzy actions: zero, low, medium and high are associated with the concrete
actions Action1, Action2, Action3 and Action4, respectively.

zero
1

low medium high

Action1 Action2 Action3 Action4

0

Figure 2.  Example of membership  functions of fuzzy actions.

 The CA-fuzzy  execution model is as follows:

(1) When an event is signaled, the interpolative reasoning process (based, for example on the Max-Min
algorithm) is performed, and a result Z* formed by the fusion of the rule results is produced. In Fig.
3, a possible fuzzy result value of Z*, low-medium, is shown if the terms of the preceding figure are
used in the fuzzy action proposition.
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Action

low-medium

ca = Center-of-gravity

Figure 3.  Example of a fuzzy result action.

(2) The fuzzy result is then interpreted by invoking concrete actions, using one of possible strategies,
such as:

• Multiple invocation maps the fuzzy result action to zero, one or more pre-defined fuzzy
actions and invokes the corresponding concrete actions. The strategy is to:

(1) Defuzzify the result, yielding the crisp action value, ca.

(2) Find fuzzy actions zi, i ∈{1,2,...n} such that μzi(ca) ≠ 0 , i.e. having non-zero membership

values for ca.

(3) Select the corresponding concrete actions for execution.

For example, in Fig.3, the Center-of-gravity algorithm yields the crisp value ca represented by the
dot on the Action axis. It is mapped to two fuzzy actions: low and medium and the corresponding
concrete actions Action2 and Action3.

• Unique invocation maps the fuzzy result to exactly one fuzzy action. The policy of
selecting an action is to

(1) defuzzify the result, yielding the crisp action value, ca.

(2) Select the fuzzy action whose membership function yields the highest value, for the given ca,
.i.e.

zi such that μzi(ca) = max(μ z1(ca ), μz 2 (ca), ...μzn(ca)) .

For example, in Fig.3,. the crisp value ca  is mapped to the fuzzy action low and, subsequently, to
the concrete action Action2.

(3) Select the corresponding concrete action for execution.

A. Example

Let us consider the example presented in section 3.4 which deals with alarm treatment in a drive control
system. We will show that the trigger specification can be further simplified using a CA-fuzzy trigger. Let us
assume there are three different alarm notification actions of which at most one is to be invoked.

First, an action set is defined whereby terms of the linguistic type AlarmSeverity are mapped to concrete
actions:

CREATE ACTION SET Alarms OF AlarmSeverity (
low NotifyLowAlarm@AlarmServer,
medium NotifyMediumAlarm@AlarmServer,
high NotifyHighAlarm@AlarmServer)

In the trigger definition, a CA rule set is included (following the WHEN keyword). The INPUT clause is used
to define the linguistic types and quantifier types of the input variables, and the OUTPUT clause is used to
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specify the action set(s). Both for input and output variables, optional alias specifications (following the
keywords AS) are possible. Aliases enable to use the most intuitive words in the rule formulation:

CREATE FUZZY TRIGGER GeneralOverheatingTrigger
AFTER UPDATE OF temp ON motor
INPUT
motorTemperatures Temperature

QUANTIFIED WITH Amounts AS motors,
motorTempDeltas NegativeToPositive

QUANTIFIED WITH Amounts AS deltas,
OUTPUT Alarms AS AlarmNotification

WHEN (
IF some motors ARE hot

AND most deltas ARE big_positive
THEN AlarmNotification is low,

IF some motors ARE very_hot
AND some deltas ARE big_positive
THEN AlarmNotification is low,

IF some motors ARE very_hot
AND most deltas ARE big_positive
THEN AlarmNotification is medium,

IF most motors ARE hot
AND some deltas ARE big_positive
THEN AlarmNotification is medium,

IF most motors ARE hot
AND most deltas ARE big_positive
THEN AlarmNotification is high,

IF most motors ARE very_hot
THEN AlarmNotification is high)

UNIQUE ACTION

The UNIQUE ACTION clause specifies the unique action invocation policy described above. Note also, that
the CA-fuzzy trigger above does the job of three C-fuzzy triggers, as one of three different actions may be
invoked. Note that, in the CA-fuzzy trigger model, more than one fuzzy action variable may be specified in a
single trigger. This expands the capability of a trigger to invoke different concrete actions.

I. Implementation notes

C-fuzzy triggers are being implemented in the prototype active database system TEMPO at VTT Information
Technology, Espoo, Finland. TEMPO is an extension of the active time series database system RapidBase
[WKP96] which was implemented in the framework of the RAPID project (1992–96). RapidBase is a main-
memory-based system using a temporal-relational model and a language based on SQL. The active capabilities
include ECA triggers with primitive database events and pre-defined composite event types (e.g., a timer event).
The trigger definition syntax is based on the SQL3 [SQL3] proposal. The RapidBase Server is implemented
as a multithreaded process programmed in C++ and running in UNIX and Windows NT environments. It is
targeted for industrial applications requiring fast access to time-series-formatted data like process
measurements.

TEMPO adds the capability to use rule set function calls in comparison predicates, in the condition part
of the RapidBase triggers. The CFlie1 fuzzy logic inference engine package is used to implement the rule set
functions. The C-fuzzy trigger functionality was derived from a case study [PBW96] where requirements and
specific problems of a real industrial application were analyzed, and the syntactical shape of the C-fuzzy trigger
was proposed.

1 Originally developed as Flie at Institute of Robotics, ETH, Zurich, Switzerland; converted to C at Lab. for Concurrent
Computing Systems, Swinburne Univ. of Technology, Hawthorn, Australia.
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We are planning to implement other fuzzy trigger models described in the paper later on. More study

will be also performed on the needs of the industrial user community in order to achieve the most convenient
interfaces of the proposed mechanisms.

I. Conclusions

Various applications, for example in industrial systems, require fuzzy concepts to capture the relevant
semantics. To do this, we propose fuzzy database triggers (fuzzy active database rules) which aim to combine
two important areas in database technology: fuzzy databases and active databases. In this paper, we first
extended the basic semantics of event-condition-action rules with fuzzy predicates and fuzzy inference. Then,
more general models were proposed in which different levels of fuzziness were identified, leading to fuzzy
actions. By way of examples using concrete syntax, we showed that the proposed models may result in
intuitive and user-oriented interfaces.

There remain several issues which require further investigations, such as a general model of fuzzy events
capturing event composition. Another important issue is to study the inter-relationship between the proposed
fuzzy concepts and other  behavioral dimensions, like coupling modes, event consumptions, etc., of active
database systems [PDW+93]. We also intend to investigate a formal approach to define the semantics of
fuzzy triggers. For example, a formal semantic for fuzzy triggers could be based on the Extended Event-
Condition-Action (EECA) rule model [FT95] which captures the semantics of rules from most existing
commercial systems and research prototypes. This could be done by extending the ECCA syntax and by
providing translation rules of the new features into a logical style of rule format, called thecore format.
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