
Applying Fuzzy Events to Approximate Reasoning
in Active Databases

Tarik Bouaziz‡ Antoni Wolski
VTT Information Technology

Technical Research Centre of Finland (VTT)
P.O. Box 1201, FIN-02044 VTT, Finland

{Tarik.Bouaziz, Antoni.Wolski}@vtt.fi

Abstract

The ever-increasing amounts of data stored in databases
make it more and more difficult to get information
summarized and provided in a timely manner to the user.
In order to achieve this goal, a fuzzy trigger model is
proposed. The model is based on the concept of a fuzzy
event. Fuzzy events are integrated with fuzzy condition-
actions using a new membership function modification
technique called squeezing. In addition, this paper
describes an application of fuzzy trigger for alarm
treatment in a real-life industrial drive control system.
The developed model can be applied to many other
application domains, where combining fuzziness with
active behavior is needed.

1. Introduction

The ever-increasing amounts of data stored in databases,
referred to as data explosion, creates a need to transform
these data to useful information. On the other hand, the
decision process using this information depends on
whether they are provided in a timely manner to the user.
The work presented in this paper has been motivated by
the needs mentioned above. It was originally driven by
the requirements of a real application being a paper
machine drive control system [PBW96]. A paper machine
is equipped with tens of high-power electric motors.
Process measurements data is stored in a database which
is fed by sensors. End-users wanted a mechanism to
satisfy two different needs. First, they wanted to be
warned when the database reaches states of interest. In
addition, they wanted the database states to be pictured in
a fuzzy manner which is close to their thinking. The
purpose was to prevent failures of the drive system. Thus,
merging fuzzy logic features and active database
capabilities was just a natural step to take.

Applying fuzzy logic to databases has been an active
research area since the 80’s [DEB89, IS89, Pet96]. The
most important issues which have been addressed are i)
the enhancement of existing data models for representing
uncertain and/or imprecise data (fuzzy data), ii) the
extension of current database languages to handle fuzzy
queries, and iii) the use of fuzzy inference to deduce
answers to questions in fuzzy expert database systems
[Zem89, LWL89].

Active databases, which incorporate Event-Condition-
Action rules into the conventional (passive) databases,
have been investigated by many researchers over the past
decade [PDW+93, WC96b]. They provide the capability
to react to database (and possibly external) stimuli, called
events, without user intervention.

To our best knowledge, no attention has been paid
until now on integrating imprecision and/or uncertainty
within database triggers. Similar work has been addressed
in the context of fuzzy expert systems [Zad84, Zad89].
Zadeh noted that since most experts’ knowledge is fuzzy,
most of its facts and rules are fuzzy. Existing expert
systems, he noted, ignore the fuzziness of such infor-
mation. Fuzzy expert systems allow fuzziness of
antecedents and/or consequents in the rules of the form
“if X is A then Y is B” where “X is A” and “Y is B” are
fuzzy propositions. Fuzzy modifiers and quantifiers can
be used in the antecedent and/or consequent of a rule.
Fuzzy expert systems are based on approximate reasoning
[Zad75, GKB+84]. Approximate reasoning deals with
inference under imprecision and/or uncertainty in which
the underlying logic is approximate rather than exact.

The main idea behind our work is similar in spirit to
the one considered in the context of fuzzy expert

systems1.
 The incorporation of imprecision and/or uncer-

tainty within database triggers may be applied to the
event, the condition or the action components of an active

1 Note that several active database features have been adapted from
production rule systems [BD83].‡ The work has been carried out within the ERCIM Fellowship

programme (ERCIM Human Capital and Mobility Programme).

Proc. Sixth IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’97),
July 1-5, 1997, Barcelona, Catalonia, Spain.

2

rule or all together. The contribution of this paper is
twofold:
• The presentation of a fuzzy trigger model which

identifies different levels of integration of fuzzy
concepts within triggers (active rules). We pursue
further the model proposed in [BW96] whereby
approximate reasoning is integrated within triggers. In
this paper, we introduce the concept of a fuzzy event
and we investigate a corresponding rule execution
model.

• The application of fuzzy triggers to alarm synthesis in a
real-life drive control system. In the control room of a
paper mill factory, the situation can be chaotic if
several alarms are launched within a short time
interval. Fuzzy triggers aggregate these alarms in such
a way that a summarized alarm is launched. This
approach enables the end user to make appropriate
decisions.

This paper is organized as follows: Section 2 illustrates
the main concepts of active databases. Section 3 presents
a model of fuzzy triggers proposed in the TEMPO
project. Section 4 provides an example of fuzzy triggers
concerning an industrial application. Then, we conclude
in section 5.

2. Active databases

Research on at least two fields have influenced work on
active databases: artificial intelligence and database
systems. Production rule systems [BD83] have been
extended so that they could work with large number of
rules and facts stored in a database [Han89]. On the other
hand, active capabilities in database systems appeared in
the early 70’s in CODASYL data manipulation language
[Cod73]. This language includes a mechanism for
automatic procedure invocation in response to specified
database operations. This was originally introduced as a
mechanism for expressing and enforcing integrity
constraints on the database. Research in active databases
exploded (see [WC96a, p. 303-324] for a reference list)
after the introduction of the event-condition-action (ECA
rule) abstraction in the HiPAC project [DBB+88].

An active database system is a database system which
detects situations of interest, evaluates the condition
when they occur, and if the condition is true, then
executes an action in a timely manner. In contrast, a
conventional passive database system only executes
queries or transactions explicitly submitted by a user or
an application program. Let us consider the following
example: when the quantity in stock of some item falls
below a threshold, then a reordering activity may be
initiated. This behavior could be implemented over a
passive database system in two ways, neither of which is

satisfactory. First, every program that updates the
inventory database could check the constraint and invoke
the reordering operation if necessary. The main disadvan-
tage of this approach is that the modification or the
deletion of this constraint requires finding and modifying
the relevant code in every program. The second approach
is to add a special application program that periodically
polls the database to check for the constraints. However,
polling too often can be inefficient and, if done in-
frequently, may result in delayed responses to critical
situations. With an active database system, the desired
behavior is expressed by rules that are defined and stored
in the database. This has the benefit that the rules can be
shared by many application programs, and the database
system can optimize their implementation [Day95].

Research in active databases has been addressing the
needs of a wide range of application domains that are not
readily met by traditional database management systems
such as network management, air traffic control, program
stock trading, workflow management, etc.

An example of a special-purpose active database
system for industrial process management applications is
the RapidBase system developed in the RAPID project
[WKP96].

3. Fuzzy triggers

We proposed basic forms of fuzzy triggers in [BW96]. In
the simplest one, called a C-fuzzy trigger, a fuzzy rule set
is encapsulated in a crisp-valued function which can be
used in an evaluation of a regular Boolean-valued
predicate of the ECA trigger condition part. A prototype
active database server with C-fuzzy triggers was also
implemented [BKPW97]. C-fuzzy triggers provide a
convenient way of introducing the fuzzy inference
mechanism to traditional active database systems but they
are limited in expressive power. Namely, no actions
neither events may be participants to fuzzy rule
specifications.

A more powerful model, called a CA-fuzzy trigger, is
also proposed in [BW96] whereby approximate reasoning
is integrated within the condition-action component of a
trigger. Its main characteristics are presented in this
section. Then, the concept of a fuzzy event is introduced
and its association with a CA-fuzzy trigger is established,
leading to an ECA-fuzzy trigger. ECA-fuzzy triggers aim
is integrating different types of fuzziness into a coherent
framework. An ECA-fuzzy trigger (or simply fuzzy
trigger) can be symbolically represented as E(CA)*,
meaning that an event fires the evaluation of n (nÚ1)
fuzzy if-then rules having a fuzzy antecedent and a fuzzy
action consequent.

3

3.1. CA-fuzzy triggers

CA-fuzzy triggers incorporate fuzziness into the condi-
tion-action components of a trigger. The condition com-
ponent of a regular trigger is a crisp predicate on the
database state. We have proposed to extend it with fuzzy
predicates which provide a higher level of abstraction
than crisp predicates. Fuzzy predicates are based on terms
like young, rich, high, tall, etc. which allow the repre-
sentation of vagueness. Similarly, a fuzzy action, defined
by a linguistic term, can be fired partially and the deci-
sion to execute an action is based on an approximate rea-
soning process which aggregates the overlapping of
elements of fuzzy actions. In addition, whereas the cause-
and-effect relationship between the condition and the
action part of a regular trigger is a matter of yes/no, it is a
matter of degree in CA-fuzzy triggers. Besides incorpo-
rating approximate reasoning within triggers, the
interpolative reasoning (based on the Max-Min inference
method) mechanism could be useful to reduce the prolif-
eration of triggers, and thus to improve the performance
of the system. While addressing the approximate rea-
soning in databases, it is important to note that the infer-
ence engine operates on the whole database.

The cause-and-effect relationship between the data-
base state and concrete (implemented) actions is
expressed as a fuzzy rule set in the form:

if FP1 then FA1

if FP2 then FA2

...
if FPn then FAn

where a fuzzy predicate FPi is constructed from fuzzy
propositions qx X IS|ARE ax connected by fuzzy operators
and, or and not. X is a linguistic variable representing a
database value fuzzyfied using the term ax (and the

corresponding membership function) in the term set Ax,
a Ax x∈ . The optional fuzzy quantifier q Qx x∈ (Qx is a

set of quantifier terms of X) may be also used. FAi is a
fuzzy action proposition represented as: Z is zi where Z

is a linguistic variable having a set of linguistic terms {z1,
z2, ... zn}. There also exists a set of concrete actions A =
{a1, a2, ... an} of which each ai (i=1,2,...n) may be
implemented, in a real system, as a distinct procedure,
i.e. a database command (or sequence thereof) or an
external procedure. The sets Z and A are said to be
mapped to each other if zi is associated with ai, for each i
= 1, 2, ... n.

Thus, a linguistic term zi denotes a fuzzy action and it
is uniquely associated with a concrete action ai. All the
membership functions of Z are defined over the same

arbitrary domain where the relationships among the fuzzy
actions are captured.

For example, in Fig. 1, the fuzzy actions: zero, low,
medium and high are associated with the concrete actions
Action1, Action2, Action3 and Action4, respectively.

zero
1

low medium high

Action1 Action2 Action3 Action4

0

Figure 1. Example of membership functions of fuzzy
actions.

The execution model of CA-fuzzy triggers involves
detecting of an event, performing the interpolative
reasoning process and executing an action in which the
Center-of-gravity of the interpolative reasoning result has
the highest membership degree.

3.2. Fuzzy events

Recently, efforts have been made to extend the
expressive power of event specification languages
[GD93, CM94]. However, none of these languages has
addressed the specification of imprecise and/or uncertain
events which are inherent i) to the incomplete states of
knowledge of a particular user to describe precisely a
situation of interest and ii) to the application domains
involving imprecision and/or uncertainty such as in
industrial applications in which the use of fuzzy linguistic
terms convey more useful information than crisp values
would do [Men95].

Fuzzy events, defined as fuzzy sets, allow the
description of situations which are not known precisely,
but known approximately. They allow users to express
situations of interest using linguistic terms such as high,
low, strong, etc. For example, let us consider the follow-
ing situation which states that “when a motor reaches a
temperature of 100 °C, then alarm the operator”. A corre-
sponding crisp event is “when updating the temperature
of a motor to 100 °C”, which means that the measure-
ments 95°C, 99°C, 101°C or 103°C are just ignored.
However, these values could be meaningful in practice.
The example situation may be expressed as a fuzzy event
“when updating the temperature of a motor to about-
100°C” and is defined by the membership function µabout-

100(x) (Fig. 2) which is interpreted as follows: the degree
of possibility that the temperature takes t as a value is

4

equal to µabout-100(t). Thus, fuzzy events play a role of
possibility distributions [DP88].

µabout-100(x)1

0 90 95 100 110 Temperature

0.5

Figure 2. Membership function of a fuzzy event

We define a primitive fuzzy event as a pair <ec, ef> where
ec is a crisp primitive event (e.g., database operations
such as INSERT or UPDATE in SQL) and ef is a fuzzy
event condition (predicate) defined over the set of event
parameters. For example, if the crisp event is the
UPDATE operation, the updated value is considered an
event parameter. Note that the concept of events qualified
by crisp conditions enables to describe composite events
as well as primitive events as proposed for example in
ODE [GJS92]. In order to capture both the crisp event
occurrence and the fuzzy event predicate, an appropriate
syntax have to be proposed. For example by extending
the SQL event clause [SQL3], the event discussed above
may be defined as follows:

AFTER UPDATE OF temp MotorTemperature
ON motor
IS about-100

Where temp is an attribute of the relation motor fuzzyfied
by the linguistic term about-100 (Fig. 2). This term is
defined within a set of terms, MotorTemperature, which is
called a linguistic type (see Section 4).

Let us consider a fuzzy event defined by the linguistic
term Event-Term and v as a current value of an update
event occurrence. Event signaling is based on the com-
putation of an event match factor. An event match factor
is equal to the membership degree of v in the fuzzy set
Event-Term, i.e. µEvent-Term(v). The event is signaled if the
event match factor is greater than zero. For example, let
us consider a crisp database operation “when updating a
temperature of a current motor to 95”. The event match
factor between the current value and the fuzzy event,
which is µAbout-100(95), is equal to 0.5 (Fig. 2.), meaning
that the event will be signaled.

3.3. ECA-fuzzy trigger execution model

The CA-fuzzy trigger model proposed in subsection 3.1
incorporates crisp events. In order to combine fuzzy
events presented above with the CA-fuzzy model we
propose a new membership function modification method
called squeezing. The result of the interpolative process is
based on the database state. However, many applications
need to, as part of their semantics, initiate appropriate
actions depending on the strength of events.

Intuitively, the idea of squeezing is to modify the
membership function (typically, of an interpolative infer-
ence result) to diminish its effect. Contrary to the con-
centration [Men95], which scales down the range values
of the function, squeezing converts the domain values of
the function relation. We shall define squeezing in a
general case first.

Let []µZ X* : ,→ 0 1 be a membership function defined

over a range of real numbers []{ }X x x xi i= ∈| , max0 . Let

[]s ∈ 0 1, be a squeeze factor. The modified membership

function µZ
s

* is a result of squeezing of µZ* by a factor of

s if it is evaluated as follows (á = multiplication):

µ µz
s

zx s x* *() ()• = for each x X∈

For example, the following figure depicts the member-
ship function of the possible fuzzy inference result,
squeezed by s = 0.5, if the terms of Figure 1 are used.

Action

After applying s to Z*

ca = Center-of-gravity

0

1

The possible result Z*

Figure 3. Membership function of a squeezed result

For squeezing to have intended semantics, the following
conditions have to be held:
(1) The numerical domain X of the membership function

being subject to squeezing should have zero as a
minimum value.

(2) The terms of the linguistic variable being evaluated
(e.g. a result variable of a rule set) are defined over X
in a way correlating the center of gravity of each
function with the notion of "significance" of the

5

corresponding term: the greater is the center of
gravity, the more significant is the term.

We propose to apply squeezing to associate fuzzy events
with fuzzy CA rules by squeezing the result of the fuzzy
CA rule set with the event match factor. When the above
conditions are met, the event match factor of 1 (perfect
match) would leave the result unmodified. The lower is
the event match factor the more the result function is
squeezed towards zero and the resulting center of gravity
moves towards zero too. When the result is mapped to
concrete actions, this would result in moving towards less
significant actions. In the extreme case of match factor of
almost zero, the resulting concrete action may be the
least significant one.
The following algorithmic steps characterize the
execution model of ECA-fuzzy triggers:
(1) Event signaling: The signaling step refers to the

appearance of a crisp event occurrence caused for
example by an update operation. The event is
signaled if the degree of match between the event
occurrence and the fuzzy event is greater than zero.

(2) Interpolative reasoning: When an event is signaled,
the interpolative reasoning process, using CA rules,
is performed and the fuzzy result membership
function is produced.

(3) Result modification: The result modification step
applies the strength of events to the result of the
interpolative process. The membership function of
the result Z* is squeezed as described above.

(4) Action(s) selection and execution: Selection of the
concrete action corresponding to the modified result
for execution. A fuzzy action whose membership
function yields the highest value for the given
Center-of-gravity of the modified result is selected.
A multiple invocation is also possible when the
Center-of-gravity maps with more than one fuzzy
action.

4. Example: how to generate an overheating
alarm in a drive system

The following example is based on the case study
provided by ABB Industry Oy, a manufacturer of
complex drive systems for industrial installations. An
example of such an installation is a paper machine
equipped with tens of high-power electric motors running
at different speeds and loads. The problem we are
illustrating here is how to generate a synthetic alarm
information about motor overheating in a system like
that. A serious overheating of a single motor may be a
cause for an alarm to the same extent as a moderate
overheating of a number of motors. It is required to have

alarms reported at different intensity levels (say from 1 to
4) depending on the severity of the situation. The
dynamics of the system has also to be taken into account,
i.e. the fact of the rising temperature implies a higher
alarm level than that of the decreasing temperature. We
shall show how this complex task can be achieved by
way of just one ECA-fuzzy trigger. The syntax of the
prototype language RQL/F (RapidBase Query Language /
Fuzzy) is used in this example [PBW96].

Assume that all the relevant motor measurement data
are stored in a single (possibly temporal) table having the
following schema:

motor(motorId, temp, deltaTemp)

where temp is the measured values of the motor’s
temperature and the derived column deltaTemp

represents the difference between the current and the
previous temperature reading, normalized by dividing by
the previous reading.

In order for membership function definitions to be
reusable in a database, the concept of a linguistic type is
introduced. A linguistic type embodies a set of
compatible terms to be applied to various linguistic
variables. The following linguistic type are used to
represent fuzzyfied values of temperature:

CREATE LINGUISTIC TYPE Temperature INTEGER(
normal TRAPEZOIDAL (0, 0, 120, 140),
hot TRAPEZOIDAL (120, 140, 300, 300),
very_hot TRAPEZOIDAL (145,160, 300, 300)
)

The next one is a general linguistic type to deal with
values whose interesting value range is [-1, 1]:

CREATE LINGUISTIC TYPE NegativeToPositive FLOAT(
negative TRAPEZOIDAL (-1, -1, -0.4, -0.2),
big_negative TRAPEZOIDAL (-1, -1, -0.8, -0.6),
small_negative TRAPEZOIDAL(-0.8, -0.6, -0.4,-0.2),
zero TRAPEZOIDAL(-0.4, -0.2, 0.2, 0.4),
small_positive TRAPEZOIDAL (0.2, 0.4, 0.6, 0.8),
big_positive TRAPEZOIDAL (0.6, 0.8, 1, 1),
positive TRAPEZOIDAL(0.2, 0.4, 1, 1)
)

The last linguistic type will be used to represent the alarm
severity level:

CREATE LINGUISTIC TYPE AlarmSeverity FLOAT(
zero TRAPEZOIDAL (0, 0, 0.5, 1.0),
low TRAPEZOIDAL (0.5, 1.0, 1.5, 2.0),
medium TRAPEZOIDAL (1.5, 2.0, 2.5, 3.0),
high TRAPEZOIDAL (2.5, 3.0, 4.0, 4.0)

)

Fuzzy quantifiers are also classified as types (the domain
of a quantifier type traduces the percentage of items):

CREATE QUANTIFIER TYPE Amounts (
few TRAPEZOIDAL (0, 0, 20, 30),
some TRAPEZOIDAL (20, 30, 60, 70),
most TRAPEZOIDAL (60, 70, 100, 100)

)

6

Quantifiers may be applied to value sets yielding fuzzy
quantified sets. The first value set is a set2.

 of motor
temperatures:

CREATE VALUE SET motorTemperatures OF
(SELECT temp FROM motor)

and the second one is a set of temperature deltas:

CREATE VALUE SET motorTempDeltas OF
(SELECT deltaTemp FROM motor)

Let us assume there are four different alarm notification
actions of which at most one is to be invoked. An action
set is defined whereby terms of the linguistic type
AlarmSeverity are mapped to concrete actions:

CREATE ACTION SET Alarms OF AlarmSeverity (
zero NotifyZeroAlarm@AlarmServer,
low NotifyLowAlarm@AlarmServer,
medium NotifyMediumAlarm@AlarmServer,
high NotifyHighAlarm@AlarmServer

)

In the trigger definition, a condition-action rule set is
included following the WHEN keyword. The INPUT
clause is used to define the linguistic types and quantifier
types of the input variables, and the OUTPUT clause is
used to specify the action set(s). Both for input and
output variables, optional alias specifications (following
the keywords AS) are possible. Aliases enable us to use
the most intuitive words in the rule formulation:

CREATE FUZZY TRIGGER GeneralOverheatingTrigger
AFTER UPDATE OF temp Temperature ON motor IS hot
INPUT

motorTemperatures Temperature
QUANTIFIED WITH Amounts AS motors,
motorTempDeltas NegativeToPositive
QUANTIFIED WITH Amounts AS deltas,

OUTPUT Alarms AS AlarmNotification
WHEN (

IF some motors ARE hot
 AND most deltas ARE big_positive

THEN AlarmNotification is low,
IF some motors ARE very_hot
 AND some deltas ARE big_positive

THEN AlarmNotification is low,
IF some motors ARE very_hot
 AND most deltas ARE big_positive

THEN AlarmNotification is medium,
IF most motors ARE hot
 AND some deltas ARE big_positive

THEN AlarmNotification is medium,
IF most motors ARE hot
 AND most deltas ARE big_positive

THEN AlarmNotification is high,
IF most motors ARE very_hot

THEN AlarmNotification is high)
UNIQUE ACTION

The UNIQUE ACTION clause specifies the unique action
invocation policy described above. Note also, that the
ECA-fuzzy trigger above does the job of three regular
triggers, as one of three different actions may be invoked.

Let us assume the fuzzy set shown in Fig. 3 as the
possible result Z*. Generating an alarm is based on the

2 Strictly speaking, a multiset which is defined to be set-like, but with
duplicates permitted [SQL3].

interpolative result and on the coming events. Let us
consider two consecutive updates of the column temp
with the following values: v1=125 and v2=135,
respectively. The membership degrees of these values in
the fuzzy event set hot are 0.25 and 0.75, respectively.
The purpose is to generate an alarm based on the
following semantics: the greater the µhot(t) is, the stronger
is the reaction; the smaller µhot(t) is, the weaker the
reaction. The strongest reaction is obtained when µhot(t) is
equal to one. The squeeze factors are respectively equal
to s1=0.25 and to s2=0.75. Applying these factors to the
result Z* is shown Fig. 4. Since the Center-of-gravity of
µ Z

s
*

1 is different from the one of µZ
s

*
2 , the resulting

concrete actions are also different.

Action

After applying s2

ca1, ca2

After applying s1
low mediumzero

Figure 4. Squeezing of the fuzzy result action

5. Conclusions

In this paper, we have proposed an approach based on
fuzzy triggers to cope with the data explosion problem.
We introduce the concept of a fuzzy event representing
imprecise and/or uncertain situation of interest. Then, a
fuzzy trigger execution model, dealing with fuzzy events
and fuzzy condition-action, is proposed. The model
combines fuzzy logic features with active database
capabilities to provide a high-level view of data stored in
a database. A new technique for modifying fuzzy
inference result, called squeezing, is proposed. It provides
the cause-and-effect relationship between the fuzzy event
and the fuzzy condition-action part of a trigger. An
application of fuzzy triggers to alarm treatment is then
presented.

There remain several issues which require further
investigations, such as a more general model of fuzzy
events capturing event composition. Another important
issue is to study the inter-relationship between the
proposed fuzzy active concepts and other behavioral
dimensions of active database systems [PDW+93] like
coupling modes, termination, etc.

References
[BD83] Buchanan B.G. and Duda R.O. Principles of Rules-

Based Expert Systems. In Advances in Computers,

7

1983, Vol. 22, pp. 163-216.
[BW96] Bouaziz T. and Wolski A. Incorporating Fuzzy

Inference into Database Triggers. Research Report
No TTE1-2-96, VTT Information Technology,
Espoo, Finland, November 1996. Also at
ftp://ftp.vtt.fi/pub/projects/rapid/f-infer-triggers.ps

[BKPW97]Bouaziz T., Karvonen J., Pesonen, A. and Wolski A.
Design and Implementation of TEMPO Fuzzy
Triggers. Research Report No TTE1-2-97, VTT In-
formation Technology, Finland, March 1997. Also
at ftp://ftp.vtt.fi/pub/projects/rapid/tempo-design.ps

[CM94] Chakravarthy S. and Mishra D. Snoop: An
Expressive Event Specification Language for Active
Databases. In Data & Knowledge Engineering , Vol.
14, 1994, pp. 1-26.

[Cod73] CODASYL Data Description Language Committee.
CODASYL Data Description Language Journal
Development, NBS Handbook 113, June 1973.

[Day95] Dayal U. Ten Years of Activity in Active Database
Systems. What Have We Accomplished? Invited talk,
Workshop on Active and Real-Time Database
Systems (ARTDB'95), Skövde, Sweden, 1995.

[DBB+88] Dayal U., Blaustein B.T., Buchmann A.P. et al. The
HIPAC Project: Combining Active Databases and
Timing Constraints. In SIGMOD Record, 1988, Vol.
17, No 1, pp. 51-70.

[DEB89] Data Engineering Bulletin-Special Issue on Impreci-
sion in Databases, Vol. 12, No. 2, June 1989.

[DP88] Dubois D. and Prade H. Possibility Theory: An
Approach to Computerized Processing of Uncer-
tainty. Plenum Press, New York, 1988.

[GD93] Gatziu, S. and Dittrich, K.R. Events in an Active
Object-Oriented Database System. In Proceedings
of the 1st International Workshop on Rules in Data-
base Systems (RIDS) , Edinburg, Scotland, August
1993, pp. 23-39.

[GJS92] Gehani, N.H. & Jagadish, H.V. and Shmueli, O.
Event Specification in an Active Object-Oriented
database. In ACM SIGMOD Conference on Man-
agement of Data, San Diego, California, June 1992,
pp. 81-90.

[GKB+84] Gupta M.M, Kandel, A., Bandler, W. and Kiszka, J.
(Eds.). Approximate Reasoning in Expert Systems.
Elsevier Science Publishers, North-Holland, 1984.

[Han89] E.N. Hanson. An Initial Report on the Design of
Ariel: A DBMS with an Integrated Production
System. In SIGMOD Record, Vol. 8, No. 3, Sept.
1989, pp. 12-19.

[IS89] Information Systems (Special Issue on Fuzzy Data-
bases). Vol. 14, No. 6, 1989.

[KL96] George J. Klir and Yuan B. (Eds.). Fuzzy Sets, Fuzzy
Logic, and Fuzzy Systems: Selected Papers by Lotfi
A. Zadeh In Advances In Fuzzy Systems-
Applications and Theory, Vol. 6, 1996, 821 pages.

[LWL89] Leung K. S., Wong M.H. and Lam W. A Fuzzy
Expert Database System. In Data & Knowledge
Engineering , Vol. 4, 1989, pp. 287-304.

[Men95] Mendel J. M. Fuzzy Logic Systems for Engineering:
A Tutorial. In Proc. of the IEEE, Special Issues on
Engineering Applications of Fuzzy Logic, Vol. 83,
No. 3, March 1995, pp. 345 - 377.

[PBW96] Pesonen, A., Bouaziz, T., and Wolski, A. Case
Study: Applying Fuzzy Triggers to a Drive Control
System. Research Report No. J-6/96, VTT Informa-
tion Technology, Espoo, Finland, August 1996.

[PDW+93] Paton, N.W., Diaz, O., Williams, M.H., Campin, J.,
Dinn, A., and Jaim, A. Dimension of Active
Behavior. In Proceedings of the 1st Int. Workshop
on Rules in Database Systems, Edinburg (Scotland),
August 1993, pp. 40-57.

[Pet96] Petry F.E. Fuzzy Databases: Principles and
Applications. With contribution by Patrick Bosc,
International Series in Intelligent Technologies,
1996, 240 pages.

[SQL3] Working Draft Database Language SQL3, J. Melton
(ed.), August 1994, ANSI X3H2-94-329, ISO
DBL:RIO-004.

[WC96a] Widom J. and, Ceri S. (Eds.). Active Database
Systems: Triggers and Rules For Advanced Data-
base Processing. Morgan Kaufmann, 1996.

[WC96b] Widom J. and, Ceri S. Introduction to Active Data-
base Systems. In [WC96a], pp. 1-41.

[WKP96] Wolski A., Karvonen J., Puolakka A. The RAPID
Case Study: Requirements for and the Design of a
Fast-Response Database System. In Proc. First
Workshop on Real-Time Databases (RTDB'96),
March 7-8, Newport Beach, USA, pp. 32-39. Also at
ftp:://ftp.vtt.fi/pub/projects/rapid/case.ps.

[Zad75] Zadeh L.A. Fuzzy Logic and Approximate Rea-
soning. In Synthese, 30, 1975, pp. 407-428. (also in
[KL96]).

[Zad84] Zadeh L.A. The Role of Fuzzy Logic in the Manage-
ment of Uncertainty in Expert Systems. In
[GKB+84], pp. 3-31 (also in [KL96]).

[Zad89] Zadeh L.A. Knowledge Representation in Fuzzy
Logic. In IEEE Transactions on Knowledge and
Data Engineering, Vol. 1, No. 1, 1989, pp. 89-100.

[Zem89] Zemankova M. FILIP: a Fuzzy Intelligent Informa-
tion System with Learning Capabilities. In [IS89],
pp. 473-486.

