
†Currently with Martis Oy, Finland.

Proc. First Wokshop on Real-Time Databases (RTDB'96),
March 7-8, 1996, Newport Beach, CA, U.S.A.

The RAPID Case Study:
Requirements for and the Design of a Fast-Response Database System

Antoni Wolski
Janne Karvonen
Anton Puolakka†

Technical Research Centre of Finland (VTT)
VTT Information Technology

P.O. Box 1201, 02044 VTT, Finland

e-mail: <first name>.<last name>@vtt.fi
WWW: http://www.vtt.fi/tte/projects/rapid

Abstract

Time-critical industrial applications represent a database
requirement profile which is significantly different from
that in traditional (business) database applications. Results
of a corresponding needs survey performed among lead-
ing developers of factory systems are presented in the
paper. The requirements have paved way to the develop-
ment of the RAPID system–a fast-response and active
history database Client/Server system which has a unique
assortment of temporal and active characteristics. Some of
the most crucial design questions are discussed, including
the choice of the process architecture and concurrency
models, the temporal table model and the triggers seman-
tics.

1 Introduction

In a complex industrial installation (such as a paper mill, a
power plant or a chemical process) a lot of data is pro-
duced by sensors and the automatic control system. In
order to post-process the data, the system has to cope with
the following data characteristics:

• the data assimilation rate may be as high as thou-
sands measurements per second,

• data sets are modeled as histories [Jen+94],

• data changes require actions to be taken; an active
behavior highly preferable,

In [Dat94], systems of the above type are called ARCSs
(Active Rapidly-Changing-Data Systems), and the corre-
sponding database components—ARCS databases. An

ARCS database incorporates concepts of temporal, active
and real-time databases.

In the RAPID project (1992–1995) we pursued ade-
quate solutions for industrial ARCS databases. The work
resulted in the construction of the RAPID Data Store
System—a unorthodox Client/Server database system
satisfying the most significant needs of certain industrial
ARCS environments. In this paper, we summarize the
needs surveys we performed in 1992 and 1993 (Section
2). In subsequent sections we discuss various design
alternatives. Section 3 is devoted to issues of process
architecture. In Section 4, we discuss multithreading and
scheduling. Efficient implementation of temporal tables is
dealt with in Section 5. New approaches to database trig-
gers are presented in Section 6. In Section 7, we deal with
selected issues related to the main-memory orientation in
the database system design. A plan of future work con-
cludes the paper.

2 Needs survey

2.1 Focus

After the RAPID project had been started at VTT
Information Technology in 1992, almost forty companies
were surveyed with respect to special needs for database
technology in the development of industrial data process-
ing systems. Some of the companies later joined the pro-
ject steering group and vastly contributed to the eventual
shape of the RAPID software.

The first step in the needs survey was to identify a
prospective application area. An interesting observation
was that, generally, the industrial partners were unwilling
to consider using a real-time database to maintain the data

2

within an automatic control system (i.e. during the
"automation phase" of the data life cycle). The reason was
concern of predictability. Industrial control systems are,
by nature, hard real-time systems. The partners strongly
believed that hard real-time tasks should be scheduled
statically (by pre-assigning each hard task a time slot), and
the current specialized technology in the form of PLC
(Programmable Logic Controller) equipment was best
suited for the purpose. A database system with a dynamic
transaction scheduler was considered too big a risk.

On the other hand, the partners brought our attention to
one neglected field which was utilizing the process data
during the monitoring phase immediately following the
automation phase. During this phase, the data is collected,
organized, post-processed and used in time-critical appli-
cations which are, however, not hard real-time in nature.
The primary application area identified were control room
applications in complex industrial installations, where the
data is displayed for use by the operators and also auto-
matically acted upon (e.g. to alert the operators), with the
purpose of providing the human feed-back to the auto-
matic control system.

The systems of the monitoring phase need not support
deadlines. The rationale is that human beings are in the
interaction loop of the system, and the human reaction
time is unpredictable. There are, of course, performance
requirements: the throughput and the response time on
specific tasks. The timeliness of important operations is to
be supported by prioritizing tasks on a "best effort" basis.

The RAPID Data Store System was designed to pro-
vide the database functionality to the monitoring phase
applications. The following subsections contain the sum-
mary of the needs survey [JP93] and the subsequent
requirement analysis [WJ93].

2.2 Transactions and functionality

The identified transaction types are listed below. The con-
cept of a command is introduced to denote a database
operation (possibly set-oriented) of a high-level database
language like SQL.

SRT State reporting transactions [Dat94] which insert
new sensor data into the database. The transactions
perform "blind-writes" (they do not read the
database) and are also "single writers" [Gra93]
meaning there are no conflicting write operations.
The unit of atomicity and isolation [GR92] is a
command. The data written by SRTs is called pri-
mary data. All the other data is secondary data.

DRT Data refining transactions which read one data set
and write another. Here, again, the transactions are

"single writers" and there are, essentially no read-
write conflicts with the SRT transactions because
the two types of transactions deal with data items at
different times (or, put it another way, use differ-
ent versions). There may be read-write conflicts
within the DRT class, though.

QT Query transactions which retrieve data for the pur-
pose of display and reporting. Potentially, QT
transactions engage in read-write conflicts with the
DRT transactions. However, while the snapshot
consistency may be sometimes useful, the temporal
consistency [Ram93] of the data if more important
(i.e. temporal validity prevails over serializability).

The above characteristics leads to disposing of traditional
transaction management almost entirely. It was shown in
[Gra93] that, in the presence of single writers, and the
loop-free data flow, only simple mutual exclusion is
needed, to deal with read-write conflicts, in order to
achieve serializability. Additionally, in our case, a com-
mand-level rollback (atomicity unit is a command) is satis-
factory to meet the atomicity requirements. One surprising
survey result also is that no transaction-level durability is
required—a checkpoint-based recovery is deemed suffi-
cient.

The query patterns stress usage of time—either trans-
action time or valid time [Jen+94]. The data is fetched
using time intervals, series of time points or simply the
latest data is fetched. There is a need to join the data using
valid time.

There is a broad requirement for active characteristics
of a database. They may be articulated as a need for ECA
rules [MCD89]. In addition to rules fired by elementary
events, there is a need to support composite events, to be
able to express, for example, delays and event repetitions.

2.3 Performance requirements

The performance requirements are summarized in the table
below, in terms of data flows external to the RAPID DAS.
In order to reflect the required performance/cost ratio, the
requirements are set for a reference equipment
corresponding to a typical Intel 486 PC (66 MHz) with a
sufficient amount of memory. In a real system, the per-
formance levels may be multiplied by scaling up the
equipment.

The Data Store is expected to hold primary and sec-
ondary data half in half. Total number of sensor data items
(not including timestamps and quality indicators) is
expected to be up to 100 000 rows, in the reference
equipment. It should be possible to archive half of this
data into a disk-based database for further processing.

3

Data flow Characteristics
Performance
(q = query command)
(v = value)

SRT transactions: inserting
primary data

Inserting binary or/and analog values,
high priority

10 - 500 v/s;
50/50 binary and analog

DRT transactions: inserting
secondary data

Reading primary data and inserting secondary data
(mostly analog), low priority

1- 10 v/s
(analog)

QT transactions: retrieval
requests

Responses to query commands: scalars, vectors, and time
series, normal priority

1-10 q/s, 10 - 1000 v/s
(up to1000 rows)
resp. time < 0,5 s

Archived data Portions of secondary and primary data, low priority 10 - 500 v/s

Data Definition Commands Commands defining or modifying the data structures,
very low priority.

<< 1/s

Table1. Performance requirements of different data flows.

2.4 Environment and interface requirements

The system is required to run on general-purpose comput-
ing platforms utilizing standard equipment (micro- and
minicomputers) and common operating system like
UNIX, Windows NT or OS/2. The industrial partners
stressed also the issue of learning curve of a new technol-
ogy. The data model should be simple, and the program-
ming interface should be based on existing industry stan-
dards.

3 RAPID Design Summary

3.1 Process architecture

The performance requirements resulted in a main-memory
based design. The question was whether the main-mem-
ory database would be encapsulated within a private
address space of a single operating-system-level process,
or allocated to memory shared by application processes
or, perhaps, shared by specialized server processes. We
have chosen the first alternative resulting in a database
server process communicating with application processes
using inter-process and network communications means.
What prevailed was the reliability factor—the other alter-
natives would increase the probability of corrupting the
database in connection with application failures. Another
advantage is the versatility of the Client/Server architec-
ture. However, the solution brings the penalty of the
communications overhead, when compared with a shared-
memory based solutions. The overall architecture of a
RAPID application system is shown in Fig.1.

Application processes

RAPID Server process

Main-memory-based Data Store

Clients

RQL API

Action
Servers

Action API

RAPID
Archive

Archiving
applications

Archive API

ODBC-capable
Clients

ODBC

RAPID-protocols

Fig. 1: RAPID system architecture–the server pro-
cess and application processes.

The RAPID Client/Server protocols are implemented
using the TCP/IP socket interface.

The RAPID Archive facilitates a long-term storage of
RAPID data. It is a persistent collection of replicated his-
tories implemented in disk files. The objects in the RAPID
Archive have the semantics of a stream: a history archive
stream is fed by the RAPID Server at one end and it is
emptied by an archiving application (which is, for exam-
ple, writing into an SQL database) at the other end.

4

3.2 Application interfaces

The RAPID application interfaces follow the model of
function-based interfaces to SQL databases in that there is
a platform-independent database language and a pro-
gramming language binding in a form of a library. The
RAPID Query Language (RQL) is a subset of SQL-92
[MS93], with temporal and active extensions. The pro-
grammatic interfaces are in the form of C++ class
libraries.

RQL API is a library for programming RQL clients
using the RAPID Server in a usual Client/Server fashion.
It is modeled after the forthcoming standard ISO-ANSI
SQL CLI (Call Level Interface) [CLI95].

Similar functionality is offered in the form of the
ODBC driver for Windows-based ODBC-compliant appli-
cations.

In order to be able to receive action requests generated
by RAPID triggers, the Action API library is used in an
application.

The Archive API library is used to extract data from
archive streams.

3.3 Concurrency

Typically, database servers have multithreaded design
dictated by the need to maintain several active transactions
in the same time and to handle I/O requests efficiently. In
order to satisfy the presented requirements, the method of
securing atomic writes and reads, in case of read-write
conflicts, proposed in [Gra93], would suffice.

However, we have chosen an even simpler approach:
the data manipulation requests are processed serially in a
single main thread. In place of dynamic scheduling, a pri-
ority-based scheduler selects each next request to be pro-
cessed. The scheduler uses an aging-based priority pro-
motion scheme to guarantee that the service availability
(response time) in CPU congestion situations is propor-
tional to the assigned priority. Using of a single thread
may, theoretically, lead to the priority inversion problem
[Son95], but the severity of the phenomenon is dimin-
ished by the fact that, in reality, any request is executed in
just few milliseconds (if the database size is not pro-
hibitive).

There are also auxiliary threads in the server. They are
used to perform I/O-based processing, like checkpointing,
loading, dumping and automatic archiving of the Data
Store into a disk-based database. The auxiliary threads
introduce a concurrency control problem of its own.
However, it is sufficient to maintain temporally consistent
view of the database (i.e. a view of the history at a time
point in the past) in auxiliary threads, which may be

attained using the valid time information available for the
histories.

All the threads run with equal priority, and the CPU
scheduling is provided by the operating system of the
computing platform.

3.4 History tables and temporal joins

The temporal requirements resulted in the design of his-
tory tables. For example, one creates a history table with
the command:

CREATE HISTORY TABLE temp_meter (
temp INT,
quality CHAR(3)) SIZE 10000

There is a built-in timestamp column called "OTS" (object
timestamp), and each row in a history table is automati-
cally timestamped with transaction time. The difference
between a history table and a true temporal database table
is that, in a history table, the timestamp column is acces-
sible in the same way as any other column.

The difference between a history table and a relational
database table is that the size (cardinality) of the history
table is limited (to the default size or the size specified in
the SIZE clause. Additionally, the rows in a history table
have predefined order (chronological by transaction time).
The table has also the nature of a circular buffer: new
inserted data will always fit in; as a consequence the latest
data will be removed from the table. In order to secure the
data against such fate, the user must define objects called
RAPID archivers which will replicate the history tables
into persistent RAPID archive streams.

The valid time of data is calculated at the time a query is
executed. The valid time of a row is the time period start-
ing (inclusive) with the transaction time of the row and
ending (exclusive) with the next transaction time recorded
for the object. Temporal joins are based on valid times. A
regular temporal join [Jen+94] may be requested with the
command:

SELECT col1, col2 FROM tab1 TIMEJOIN tab2
RETURN 24

returning 24 latest rows of the join. The TIMEJOIN key-
word reflects the dual nature of history tables. It tells the
system that the tables are to be treated as temporal tables in
this query. In the RETURN clause, advantage is taken of
the fact that result sets are also histories. They are ordered
reverse-chronologically by default. In the RETURN
clause, a user may specify thus the length of the result
history.

In addition to regular joins, special timepoint series
joins are supported whereby the result table is temporally
joined with a set of time events given in an RQL com-

5

mand. On can request a timepoint series join in the follow-
ing way:

SELECT col1, col2 FROM tab1 TIMEJOIN tab2
TIMEPOINT SERIES INTERVAL '10' MINUTE
RETURN 24

returning only such rows of the previous result which
have valid times containing the time points specified using
an interval. There are also other ways to specify the time
points: using an explicit list of timestamp values and by
way of a history table containing the timepoints.

Because the data in history tables is clustered by trans-
action time, no indexes are needed for timestamp
columns, and time-based queries are performed efficiently
using binary search. Thanks to the same fact, it is possible
to implement temporal joins efficiently: essentially, the
sort-merge join algorithm is used, where the data sets are
already pre-sorted.

3.5 RAPID triggers
RAPID triggers are ECA rules. The trigger syntax is

based on the existing SQL3 proposal [SQL3]. A crucial
question was how to accommodate composite events. It
has been proposed [GJS92] to model composite events as
finite state automata having a special "accepting" state.
Upon entering this state, the composite event "fires", i.e.
stimulates the condition evaluation and the subsequent
action execution.

One problem with the above approach is that a specifica-
tion of a general purpose automaton requires a complex
notation which is not intuitive for an end-user. A "user-
friendly" solution was chosen where composite events are
typified, and there is a specification syntax for each sup-
ported composite event type automaton. This results in a
simple and intuitive notation.

A minor departure from the model of [GJS92] is that
there is no "accepting" state in the automaton. Instead,
some transitions to the idle (initial) state result in a "firing"
of a trigger. Because, in the same time, the trigger
assumes the initial state, no additional transition is neces-
sary after the firing event.

The framework of the RAPID trigger definition com-
mand is the following:

trigger-definition::=
CREATE TRIGGER trigger-name
event-type
ON table-name
[event-specification]
[WHEN (trigger-condition)]
(action-list)

The syntax above follows the SQL3 scheme except for the
even-specification clause. It meant to contain the state

transition information when the event-type represents a
composite event. Let us have a look at the RAPID event
types:

event-type ::=
{INSERT
| {UPDATE [OF column-name ...]}
| WRITE
| TIMER
| COUNTER}

The last two ones represent composite events: the first one
related to delays and the second one related to recurring
events.

For example, the following trigger is fired by an event
of type TIMER, when a value inserted into a history table
exceeds 100 and does not drop below 90 within 10 min-
utes. When fired, the trigger launches an action (an alarm
procedure call) if the condition (the quality of the latest
data is OK) is satisfied at that moment .

CREATE TRIGGER temp_alarm
TIMER
ON temp_meter
 SET INTERVAL '10' MINUTE
 START ON INSERT (value > 100)
 CLEAR ON WRITE (value < 90)
WHEN (quality = 'OK')
(activate-overheating-alarm@action-handler)

The functioning of the timer automaton is illustrated in
Fig.2. Two case are shown: when the timer fires by time-
out (B) and when it is cleared (A). The example represent
a very common surveillance activity in control room appli-
cations.

v delay = 10 min

t0 t1 t2

A

B

time

value

80

90
activation level

clear level

"Fire"

"Clear"

"Start"

Fig. 2: Illustration of a timer trigger operation.

In RAPID, an action was decided to be an arbitrary exter-
nal procedure called at a dedicated action handler process.
In the action specification syntax:

action-spec::= action-name@action-server-name,

6

action-server-name is a name of an action server which the
action server process supplies upon connecting to the
RAPID Server, and action-name is a name of a procedure
in that action server.

The decoupled action execution model was chosen
because multi-command transactions are not supported. In
other respects the RAPID triggers support the standard
trigger mechanism semantics [WC95]

The following is an example of a counter-based trigger.
It generates a notification when four consecutive values
are recorded above a certain value level and the reset level
was not reached (Fig. 3):

CREATE TRIGGER repeated_overflow
COUNTER
ON furnace

SET 4
INCREMENT ON INSERT (temp > 90)
RESET ON INSERT (temp < 80)

(RepeatedUpperAlarm@TempActions)

v
count value = 4

A

B

time

value

80

90

reset level

increment level

"Fire"

"Reset"

"Increment"

Fig. 3: Illustration of a counter trigger operation.

The full syntax of the RAPID triggers is included in the
Appendix.

3.6 RAPID archivers

RAPID archivers are periodically active objects which are
responsible for replicating selected history tables into the
RAPID archive streams. The definition of an archiver
includes the specification of a history table it is defined
on, a mapping of names and column formats into a rela-
tional database table, an interval between the archiver acti-
vations, and a directory path to the location of the archive
streams. The following is an example of an archiver def-
inition:

CREATE ARCHIVER m23_archiver
OF TABLE meter23 TO device23
COLUMN timestamp TO tstmp CHAR
COLUMN alarm_flag TO flag INT
COLUMN meas_value
INTERVAL'10'MINUTE
USING PATH '../archives'

3.6 Ramifications of the main-memory based
design

Contemporary computer architectures inflict difficulties in
designing efficient memory-intensive programs.
Especially, in a main-memory database, the traditional
assumption that the cost of the memory access is constant
[GMS92], does not apply any more. The reason is the
hierarchical memory access architecture present in most
modern processors, incorporating multi-level caches.
Careful studies and experiments [Oks95] reveal great dif-
ferences in program performance, depending on how well
the reference locality is maintained in a program.

We addressed the problem of optimizing the locality of
reference in various parts of the RAPID server software.
The history table and the index structures are optimized
for better locality of reference. Other algorithms are also
scrutinized from this standpoint. The downfall of this
approach is that automatic memory management facilities
of programming systems (like dynamic object allocation
on the heap in C++) have to be abandoned, and arcane
programming techniques have to be introduced.

3.7 Performance

The current version 5.0 of RAPID runs under UNIX
(HP-UX) and Windows NT operating systems. The per-
formance tests revealed that the row insertion rate on a
reference equipment (66MHz i486 PC) under Windows
NT was 200 inserts per second while the sustained
archiving activity was about 100 rows per second in the
same time. The insertion load was fed through the net-
work, one command and row per message. A user has
various options to optimize the message traffic, e.g. by
using multi-row INSERT commands or by buffering
commands at a client site. The effects of these techniques
has not been tested yet.

In UNIX environment (HP 9000) insertion rates above
1000 per second were achieved.

The effect the triggers have on the overall performance
depends on how many trigger firings result in sending an
action request. If triggers do not cause action requests,
they have only minor effect on performance–it may be
measured within few percent. However, each action
request "costs" as much as three insertions.

4 Related work and conclusions

Various component technologies present in RAPID have
been researched to a great extent. These include languages
for temporal databases, like TSQL/2 [Sno+94], languages
for composite event specifications like in Snoop [CM93]
and Ode [GJS92], issues of temporal consistency [SL92,

7

Ram93], main-memory based storage design [GMS92,
JLRS94] and real-time scheduling [Son95].

The RAPID project has been an engineering laboratory
of integrating these technologies into a workable solution
meeting requirements of industrial users. The RAPID les-
son is that, in order to meet primary requirements, it is
sometimes necessary to sacrifice the overall generality.
The RAPID Data Store System incorporates an active and
temporal database, and also meets certain timeliness re-
quirements, but each of the "personalities" has room for
improvement in terms of generality.

Future work will concentrate on enhancing temporal
capabilities towards a full-function temporal database and
active functionality to enable a more general specification
of composite events. A possibility to incorporate an ob-
ject-oriented database language will be studied too. The
challenge is to achieve the goals without compromising
the overall performance. Also, an interesting engineering
issue is how to produce database systems specialized for
different applications easily. In order to achieve this goal,
a component-based or extensible system approach has to
be taken.

Epilog

At the time of this writing (February 1996), the RAPID
software is being field-tested at three industrial partner
companies in Finland.

References
[BHG87] P.A. Bernstein, V. Hadzilacos and N.

Goodman. Concurrency control and recovery in
database systems. Addison-Wesley Publ. Comp.,
1987.

[CLI95] ISO-ANSI Working Draft, SQL Call-Level
Interface (SQL/CLI), doc. no. ISO/IEC JTC 1 / SC
21 N 9464, March 1995. Previously as X/Open
Specification: X/Open Document Number S203,
Berkshire, United Kingdom, July 1992.

[CM93] S. Chakravarthy and D. Mishra. Snoop: An
Expressive Event Specification Language For
Active Databases. Tech. Report UF-CIS-TR-93-
007, University of Florida, March 1993.

[Dat94] A. Datta. Research Issues in Databases for
ARCS: Active Rapidly Changing Data Systems.
SIGMOD Record, Vol. 23, No. 3 (September
1994), pp. 8–13.

[EC75] K.P. Eswaran and D.D. Chamberlain.
Functional Specifications of a Subsystem for Data
Base Integrity. Proc. 1975 VLDB Conf.,
Frammigham, Mass., September 1975.

[GJS92] N.H. Gehani, H.V. Jagadish and O.
Shmueli. Composite Event Specification in Active

Databases: Model & Implementation. Proc.
VLDB'92 Conf., pp. 327-338.

[GMS92] H. Garcia-Molina and K. Salem. Main
Memory Database Systems: An Overview. IEEE
Transactions on Knowledge and Data Engineering,
Vol. 4, No. 6, December 1992, pages 509 - 516.

[GR92] J. Gray and A. Reuter. Transaction
Processing Systems, Concepts and Techniques.
Morgan Kaufmann Publishers, 1992.

[Gra93] M.H. Graham. How to Get Serializability for
Real-Time Transactions without having to pay for
it. Proc. Real-Time Systems Symposium, Raleigh-
Durham, North Carolina, December 1993, pp. 56-
65.

[Jen+94] C.S. Jensen et al. A Consensus Glossary of
Temporal Database Concept. SIGMOD Record Vol.
23, No. 1 (March 1994), pp. 52–64.

[JLRS94] H.V. Jagadish, D. Lieuwen, R. Rastogi, A.
Silberschatz. Dalí: A High Performance Main
Memory Storage Manager. Proc. VLDB'94 Conf.,
Santiago, Chile, September 1994, pp. 48-59.

[JP93] J. Jokiniemi and A. Palomäki. Real-Time
Databases: A Needs Survey. Research Report No.
J-15, Lab. for Information Processing, VTT,
Helsinki, February 1993. URL:
ftp://ftp.vtt.fi/pub/projects/rapid/needs.ps.

[MCD89] Dennis R. McCarthy and Umeshar Dayal. The
Architecture Of An Active Data Base Management
System. Proc. 1989 ACM SIGMOD Conf.
(Portland, Oregon, USA), pp. 215-224.

[MS93] J. Milton and A.R. Simon. Understanding the
new SQL: A Complete Guide. Morgan Kaufmann
Publishers, San Mateo, California, 1993.

[Oks95] K. Oksanen. All RAM Is Accessible, But
Some RAM Is More Accessible Than the Other.
Unpublished manuscript, URL:
http://www.cs.hut.fi/~cessu/noram.ps.

[Ram93] K. Ramamritham. Real-Time Databases.
Distributed and Parallel Databases, Vol. 1, No.
2(April 1993), pp. 199–226.

[SL92] X. Song and J.W.S. Liu. How well Can Data
Temporal Consistency be Maintained. Proc. IEEE
Symp. on Computer-Aided Control Systems
Design, 1992.

[Sno+94] R. Snodgrass et al. TSQL2 Language
Specification. ACM SIGMOD Record, Vol. 23,
No. 1 (March 1994), pp. 65-86.

[Son95] S.H. Son (ed.). Advances in Real-Time
Systems. Prentice-Hall, Inc., 1995.

[SQL3] Working Draft Database Language SQL3, J.
Melton (ed.), August 1994, ANSI X3H2-94-329,
ISO DBL:RIO-004.

[WJ93] A. Wolski and J. Jokiniemi. RAPID Data
Store System: Requirements. Internal project report,
Lab. for Information Processing, VTT, Helsinki,
June 1993. URL:
ftp://ftp.vtt.fi/pub/projects/rapid/require.ps.

[WC959] J. Widom and S. Ceri (eds.). Active Database
Systems: Triggers and Rules For Advanced
Database processing. Morgan Kaufmann
Publishers, Inc., 1995.

8

Appendix: The full syntax of trigger
definition in RAPID.

create-trigger-statement ::=
CREATE [OR REPLACE] TRIGGER trigger-name
event-type
ON table-name
[timer-specification | counter-specification]
[WHEN (trigger-condition)]
(action-list)
[SEND ROW]

Trigger-name defines a name for the event-condition-
action rule. Trigger names are unique within a datas-
tore.

ON table-name defines the table into which the trig-
ger is attached.

The WHEN clause contains the condition which is the
condition to be evaluated before an action is activated.

event-type ::=
INSERT
| {UPDATE [OF column-name ...]}
| WRITE
| TIMER
| COUNTER

INSERT defines that the trigger is fired on inserted
values on the table called table-name, UPDATE
defines that the trigger is fired on updated values, and
WRITE defines that the trigger is fired on both
inserted and updated values. TIMER defines a timer
trigger whose behavior is defined in timer-specifica-
tion. COUNTER defines a counter trigger whose
behavior is defined in counter-specification.

OF column-name defines that the condition is
checked only if the column-name column (or
columns) is affected in the course of executing an
UPDATE. If the column clause is not used, the trigger
is fired whenever the table is updated.

timer-specification ::=
SET interval-literal
START ON INSERT {(trigger-condition) | ALWAYS}
[CLEAR ON INSERT { (trigger-condition) |
ALWAYS }]
[CLEAR NOW]

interval-literal ::= INTERVAL 'number' SECOND |
MINUTE | HOUR | DAY

Timer trigger is a normal trigger expanded with entity
called timer. INTERVAL defines the time span that the
timer will measure when activated. START ON
INSERT defines when the timer is started. If trigger-
condition is not specified, the timer will be started on
every insert to specified table. Otherwise the timer is
started only if trigger-condition is satisfied. After the
timer is started, it is in active mode and it does not
evaluate START ON INSERT condition any more.
CLEAR ON INSERT defines when an active timer is
stopped. It works the same way as START ON
INSERT. If the timer is stopped while it is in active
mode, the trigger returns to the idle state and reacts
only to events defined in START ON INSERT. If the
time span specified runs out and the trigger was not
cleared, the action will be launched. If there is a
WHEN condition specified, the trigger will not launch
an action unless the condition is satisfied. CLEAR

NOW is used in connection with the OR REPLACE
option to clear the timer while redefining the trigger.

counter-specification ::=
SET number
INCREMENT ON INSERT (trigger-condition) |
ALWAYS }
[RESET ON INSERT (trigger-condition)]
[RESET NOW]

SET defines the count value the counter fires at. The
counter is incremented each time the condition in
INCREMENT is satisfied. The counter is reset (set to
zero) when the condition in RESET is satisfied.
RESET NOW is used in connection with the OR
REPLACE option to reset the counter while redefin-
ing the trigger.

trigger-condition ::=
{comparison-condition [AND comparison-condition]}
| between-condition
| null-condition

comparison-condition ::=
[OLD. | NEW.] search-column-name comparison-
operator literal
| literal comparison-operator [OLD. | NEW.] search-
column-name

between-condition ::= [OLD. | NEW.] search-column-
name
BETWEEN literal AND literal

null-condition ::=
[OLD. | NEW.] search-column-name IS NULL
| [OLD. | NEW.] search-column-name IS NOT
NULL

If the [OLD. | NEW.] is not used, the NEW column
value is assumed. NEW denotes the row resulting
from the triggering command. OLD denotes the
image of the row before executing the UPDATE
command or, in case of the INSERT command, the
chronologically preceding row in the history table.

The actions are specified in the action list:

action-list ::= action-name@action-server-name [, action-
name@action-server-name]…

The notation action-name@action-server-name
defines the name of the action to be called and the
name of the corresponding Action Server. Each
Action Server submits its name when connecting the a
RAPID Server. An action function has a standard
parameter list including: the trigger name, table name
and the key of the row the trigger is fired on (the
triggering row).

The action-list is valid regardless of the existence of
the corresponding Action Servers. If an Action Server
is in the list and it is not connected at the time of the
trigger execution, the action request is skipped and an
error message is generated in the System Log.

A trigger is fired for each affected row. The data
passed to action functions is thus row-specific.

SEND ROW causes the contents of the triggering row to
be sent, following the action function call. The action
function may extract the contents of the row using
appropraite programming interface methods.

