
 SINCA: Scalable in-memory event aggregation
using clustered operators

Mahesh Kumar Behera *1, Kalyan S *2, Prasanna Venkatesh *3 , Antoni Wolski #4
*Huawei Technologies India Private Limited
Divyashree Techno Park, Bangalore, India

1 mahesh.behera@huawei.com
2kalyan.s@huawei.com

 3prasanna.venkatesh@huawei.com
AWO Consulting, Helsinki, Finland

4awoc@wolski.fi

Abstract — Analytical processing of various information
created in the operation of social media requires queries
involving grouping and aggregating of large volumes of detail
data. Any advanced query processing method should take into
account two dominating hardware trends: increasing main
memory capacities and increasing parallel processing capacity
exposed as growing number of cores per processor chip. We
introduce a scalable in-memory method for data aggregation
(SINCA), using clustered operators, which profits from the
hardware trends. The method uses a concept of a microengine
being a set of resources that can be utilized in parallel, with great
efficiency. The resulting parallelized aggregation algorithm is
characterized by a low overhead and high volume, and is suitable
to both real-time and extract-transform-load scenarios. The core
idea of the method is to use real-time histograms to partition the
data for grouping. As the data is already grouped during the
partitioning phase, the group aggregation can be done very
efficiently. Additionally, some of the grouped data can be cached
for re-use in subsequent queries.

I. INTRODUCTION
With the pervasive usage of social networking sites, the events
getting generated come in larger and larger sets. A new
industry termed “big [social] data analytics” has emerged
around the existence of such large data. These large,
unstructured, heterogeneous data sets have to be churned to
derive “values” contained in it. The derived value helps
people to gain better insights, which can be used to define and
derive new business models. There are two important aspects
that must be taken care of while deriving values from such
events. Firstly it is hard to ignore the fact that the pace at
which these events get generated make the older data outdated
and stale very soon. Thus “freshness” is an important attribute
of the extracted information in today’s digital era. Secondly
because of the abundance of data generated from various
streams in social media, summarization is needed. The data
has to be grouped and aggregated to bring out a bigger picture.
For example, role analysis (which analyses the percentages of
different roles that are assumed by community users over
time[1]), behavioral analysis[2], market segmentation, viral
event prediction and CDN (Content Delivery Network) data

prefetch [3], etc. depend directly or indirectly on grouped data
analysis.

The industry has responded to this massive amount of data
by creating methods of pipeline-based processing. Multiple
mechanisms ranging from stream processing to massive
history data processing have emerged. Variations like real-
time processing, massive batch processing is also prevalent.

There have been significant, fast paced advancements in the
hardware front over the past few years. A major trend, though
not new, is to increase the processing capability of the system
by adding more and more cores into a single system. NUMA
(Non-Uniform Memory Access) based system is an evolution
of such a trend. Apart from increasing the processing power,
large RAM capacities and faster, larger caches, SIMD (Single-
Instruction, Multiple-Data stream) execution, etc. have been
forcing analytical database designers to relook the designs.
These trends are fostering in-memory solutions to be cheaper
and more viable options than disk-based solutions. This
would effectively remove the bottlenecks associated with I/O
and make the data available for operation in memory.

However, to tackle large volumes of data in real time, along
with the hardware capabilities, it is required to have improved
algorithms to harness them. We focus on meeting the
challenges of large hierarchical memories and NUMA
architecture in the context of grouped aggregation. Grouped
aggregation is in the center of analytical data processing by
producing highly summarized results. In SQL, grouped
aggregation is exposed by the use of aggregate functions like
AVG() and the GROUP BY clause.

In this paper we propose a two-phased, intra-query
parallelized group aggregation algorithm. We call this new
radix-cluster-based algorithm Scalable In-memory NUMA
aware Clustered Aggregation algorithm (SINCA algorithm).
We introduce an intra-query parallelization engine, referred to
as microengine (ME). Microengine is a thread operating on
local memory. By way of pre-defined core affinity, the thread
can execute a parallel part of the algorithm on a data partition
residing in local memory. In SINCA, the data to be grouped
is partitioned (clustered) to minimize the synchronization
overhead. The algorithm can make use of vectorized code

Proc. The First International Workshop on Scalable Social Event
Processing and Management (SSEPM 2015), In conjunction with the
ICDE 2015 Conf., April 13, 2015, SEOUL, Korea.

 2

execution too and thus is suitable for exploiting both the
SIMD instructions and thread level parallelism available in
today’s multi-core processors. In the first phase, the
microengine based intra-query parallelization is used to
reduce the impact of NUMA and multi core synchronization
overhead. In the second part, a histogram-based radix cluster
is used to group the input data into smaller subsets to
maximize the use of pipelining, SIMD and local memory
caches.

We implemented and evaluated the SINCA algorithm on an
in-memory column store database, and we measured the time
taken for group aggregation query. By using our method, the
time taken to execute a query and fetch all the records is
decreased at least by 1.4 times compared to normal parallel
group-by algorithms. The improvement increases with the
increase in number of groups and it reaches 5 times with 1.44
million groups. By using our new method, the time taken to
execute the query and fetch the first set of records (query
response time) is decreased at least by 4 times, compared to
normal parallel group-by algorithms. The improvements
increases with increase in number of groups and it reaches 32
times with 1.44 million groups.

This paper is arranged as follows. In Section II, the related
work is presented. The detail implementation and motivation
for the clustered group aggregation algorithm is described in
Section III. In Section IV, experimental results are reported.
Section V concludes the paper.

II. RELATED WORK
Grouped aggregates are resource-consuming operations. Their
best case complexity lies in O(n. log n). Hence it is beneficial
to parallelize their execution. Grouped aggregates are by
nature materialized. That is to say that all the input data for
the grouping have to be materialized and only then the
aggregate results can be produced. This materialized nature of
the grouped aggregates makes parallelization of grouped
aggregates difficult. The following diagram (Fig. 1) shows the
prior art. In this implementation the last step “FINAL
AVERAGE” is an obstacle:

1. It makes the execution wait until the final step is over,
thereby introducing the latency

2. The final step is generally executed on a single thread,
thereby making this step the bottleneck.

Substantial work has been done to improve the performance
of group aggregation. The key trend has been towards
parallelizing this building block, as in intra operator
parallelism. Be it commercial disk database, e.g. Microsoft
SQL server [9] or a patented idea [10], there has been
substantial development and interest in parallelizing the
grouping operation by splitting the data to number of threads.

However there is no known work done to tune the group
aggregation query for in-memory execution and to make use
of current hardware improvements.

.

Fig. 1. Query execution in prior art.

Processors are equipped with SIMD hardware allowing to
performing so-called vectorized processing that is, executing
the same operation on a series of closely adjacent data.
Current parallel grouped aggregate methods use SIMD in a
limited way to compute the aggregates. This paper suggests
using SIMD more widely in the query processing.

Columnar stores store each column separately. A notional
row is bound by row-ids shared by the column constructs.
Traditional repartition techniques involve copying of the
columns on which grouping is done and also the columns
which need to be aggregated. Such a model does not leverage
the storage layout of columnar databases.

As hardware trends involve putting more and more
processors and cores into a single chip, the processing
capacity of the system has been growing. As suggested in [6],
the trend is shifting towards multi-core utilization rather than
on speeding up individual CPUs. In [6] and [7], authors
emphasize data placements and data movement to gain
scalability and high performance on NUMA based systems.
The tests reported in [7] ascertain the claims.

There are also improvements in the capabilities of other
hardware components, like larger caches, increased RAM
memory and larger TLB, and huge page support. As per the
experiments and study put forth in [5] and the case studied
further in [4], it is necessary to tune the software to tame the
hardware power. In [4] and [5], an approach is taken to
perform grouping by splitting and repartitioning the data using
radix clustering, so that the data fits within the TLB better,
and avoiding cache misses while using the data. The crux of
the performance lies in choosing suitable radix bit for the
radix clustering [8].

In this work, we built upon existing algorithms [9] [10] and
increased the emphasis on better accommodation of NUMA,
SIMD, TLB, and cache consciousness.

III. SINCA ALGORITHM
We have designed a multi-threaded NUMA aware method
utilizing parallel processing units called microengines (MEs).
A microengine executes one of many parallel threads on a

 3

data partitioin that is local to the core the microengine is
running on.
 The algorithm starts with creating a histogram on the data to
be grouped and aggregated. This histogram’s output lets the
query planner to decide the applicability of the SINCA
algorithm. SINCA is suitable for calculating grouped
aggregate on groups where cardinality of each group is
roughly the same. Next we use a radix clustering method to
cluster the data based on a particular column’s value. The
number of radix bits (b) to be used for the clustering is chosen
in such a way that it can exploit the cache and TLB as
suggested in [5]. Also, as part of clustering, the data (or
records) from various NUMA memory banks are moved to a
common memory bank based on the radix cluster number.
This step is critical to exploit the advantages of NUMA
memory access and achieve maximum scalability. Since the
operation in one group will not interfere with the one in
another group, contention is completely eliminated. Next,
these clusters are fed to ME threads, which are bound to the
core on which the data is local and execute the aggregation
algorithm. This step is completely contention-free as the data
on which each thread works is already clustered and the
aggregation calculation on one cluster is totally independent
of the data in other group. Also the cache and TLB usages will
be superior because of the size of the cluster chosen.

In Fig. 2, the flow of data in the SINCA algorithm is shown.
The input data can be table data or can be data streamed from
real time event sources. In case of table data, the clustering
phase creates a separate copy of NUMA-aware clustered data
required for the group aggregation. In case of streamed data,
the data can be partitioned to different clustered during
insertion. The figure depicts the data storage in a 2 socket
NUMA machine having 4 processors. As the chosen cluster
size is based on the system information, the data for hash table,
aggregated value and the final result can be accommodated
inside processor cache to improve the query execution speed.
The final output can be streamed to the next phase when the
results from each processor are ready and the processors can
start working on the next cluster.

Fig. 2. SINCA query execution

In Fig. 3, the notional query plan generated during the
execution of the SINCA algorithm is shown. The SINCA
distributor node parallelizes the execution of the aggregation.
The Scan nodes in the bottom of the query tree operate on the
clustered data from each memory bank and feed the results to
the parent nodes for processing.

In the rest of the section we will explain, in detail, the
algorithm.

A. Microengine based Intra Query Parallelisation
Most database systems are constructed in such a way that each
query is executed in a separate thread. This is called a thread-
per-query model. In an analytical system, the queries can be
rare but very complex. The query response time becomes an
important performance indicator. If the thread-per-query
model is used in a modern system having a large number of
processor cores, the cores can be left unutilized and the
response time can remain poor. To cope with this problem, we
introduce operation-level parallelism: each query is split to a
number of subthreads (called microthreads) that are executed
concurrently in different cores.

Fig. 3. SINCA query execution

 This microthread model is illustrated in Fig. 4, where it is
contrasted with the thread-per-query model.

 4

B

A

C

Query

Result

a)

B

A

C

Thread split

Thread splice

Query

Result

B

A

C

B

A

C

(...) B

A

C

b)

Query
thread

Micro-
thread

Fig. 4. Query execution in a) the traditional thread-per-query model and in b)
the microthread model.

It is not sufficient to just make the operation parallel. With
increasing size of physical memory, the time to access the
memory has increased drastically. With new systems having
non-uniform memory partition, it is now more and more
important to keep the memory access local.

The problems with caches are that they do not end with
cache misses. If the same memory location is copied to more
than one cache, writing to that location is subject to cache
coherency protocol. That protocol, executed by the on-chip
hardware, has the purpose of ensuring that no concurrent
conflicting writes (to two different copies of a memory
location) can happen. The protocol, typically, invalidates the
old copies of the same memory location, so that other threads
cannot use them. It is only when all invalidation messages are
acknowledged, that the data item can be written into the cache.
The cache protocol has to be executed across all the sockets in
the system, and thus, it has to use the socket interconnect
mechanism (In Intel, it is called QPI – QuickPath Interconnect)
(Fig. 5).

Socket 1 Socket 2

Memory bank 1 Memory bank 2
Fig. 5. Illustration of the memory hierarchy and inter-socket communication
components in a processor (Intel Nehalem).

All of this can increase the duration of a write operation by
one or two orders of magnitude, depending of the system size
and load situation. The protocol affects also the memory read
operations: the next access to the invalidated data will cause a
cache miss. The best way to avoid the intervention of the

cache coherency protocol is to make the cached data private
— when there are no other cached copies at all. This is what
all cache-sensitive algorithms try to do.
The problems with the hierarchical storage do not even end
here. As can be seen in Fig. 5, different parts of main memory
(memory banks) are connected to different sockets. The time
to access the socket's local memory bank is much shorter
(about a half) compared to accessing a remote memory bank.
The solution is called NUMA (Non-Uniform Memory
Architecture) and was introduced to avoid a bottleneck caused
earlier by a single memory bus. With NUMA, on-chip
memory controllers allow for fast access to the local memory
bank. The solution works well if the threads running on a chip
predominantly use local memory. However, if the remote
memory is accessed, the NUMA penalty has to be paid. It is
not only in the form of longer access times. Because the data
requested from remote memory banks flows through the same
socket interconnect mechanism that is used by the cache
coherency protocol, that mechanism can become the single
most damaging bottleneck in the system.

 The microengine-based system comes handy in these
scenarios. As the data is partitioned at run time, only adjacent
data are feed to each microengine. This ensures that each
microengine accesses only local data and do not touch data
accessed by other microengines. The number of microengines
can be configured to be dependent on the amount of data and
load on the system. With no shared access to data, the
microengine based system reduces the system cache
contention drastically. This makes the query execution faster.

B. Radix Clustered Group Aggregation
The major problem in parallel algorithm is synchronisation
overhead. The first kind of synchronisation overhead is related
to data dependency. The problem with data dependency can
be avoided using data partitioning, as we have discussed in the
previous section. But there is a bigger problem with respect to
data dependency when the final output depends on the whole
of the data, like in grouped aggregation. Because of the
interlining of the result with the whole of data, most of the
parallel grouped aggregation algorithms operate in a two-
phase manner as discussed above. These two-phase algorithms
make use of the multiple cores in the first phase but merge
back to a single-thread operation in the second phase and thus
make the system underutilised. In SINCA algorithm we have
removed the second phase of normal group-by algorithm by
partitioning the input data based on group-by column. The
detailed algorithm has three steps. The first step is distributing
the input data based on radix bits. The next step is preparing
the data for each microengine. This step makes a copy of the
input data which will be used for aggregation and grouping.
The final step is the actual grouped aggregation operation by
each microengine and projection of the result.

We are applying radix clustering methods to cluster the
input data using a fixed number of bits, called the radix bits, to
create clusters that are groups of adjacent values having the
same radix bits. If the number of radix bits is n, then the
number of clusters generated is 2n. In the example, two least
significant bits are used, resulting in four clusters (Fig. 6).

 5

Each cluster carries the GROUP BY columns values and the
corresponding row_IDs. The radix bits are chosen using the
single scan analysis of the input data to make the clusters
small enough to fit into the system cache. Radix clustering
makes clusters independent for group aggregation calculation.
With the clustered data fitting into cache size, all the group
aggregation processing can be done inside cache and thus
improve the query execution speed.

Fig. 6. Grouping of records based on radix cluster.

Each thread continues on a cluster by expanding it with
aggregate columns. Since each thread operates on data
existing in its NUMA node, the projection operation is
NUMA-friendly. The following diagram (Fig. 7) shows the
projection performed by three threads on three local clusters.

Fig. 7. NUMA friendly storage of cluster data.

A single total cluster (a combination of local clusters) is
spread across discontinuous memory. This is because each
thread individually performed the clustering. A thread which
will perform the grouping on a single total cluster will need to
gather all these cluster data. The gathering is done by the
thread obtaining the starting address and the number of items
in that address (Fig. 8). The table data is not copied. Even if
the piece of a total cluster is present in the remote node, the
access is going to be sequential and, thus, very efficient.

The grouping can be done by any method (Hash, Sorted or
nested loop). The group aggregation can be done in parallel,
independently for each total cluster.

Fig. 8. Projected data from cluster with radix bits 00.

The aggregation is done by looking up the aggregation
column values present in the clustered data. The grouped
aggregate for one cluster (of cluster no. 01) is shown here (Fig
9).

550
300

SUM(sales_
value)

1
9

PDT_
ID

73
31

SUM(sales_
piece

Fig. 9. Group aggregate

IV. EXPERIMENTAL RESULTS
The experiment has been performed on an in-memory column
store database. The database table has 5 columns of integer
type. The dataset includes 5 million rows. The experiment is
done to measure the total execution time and the response
time of the first result row. We have done the experiments on
three different group sizes. The group size depends on the
number of distinct values in the input data.

TABLE I

Number of
groups

Execution Time (in milli seconds)
Prior Art SINCA Improvement

50001 (1%) 410.902 293.141 1.4
499979
(10%)

2467.583 511.594 4.8

1446523
(30%)

4386.6 849.652 5.1

In Table 1, the execution time for prior art parallel group
aggregation is compared against the result of SINCA. Here,
the time is measured from start of query execution to the time
it finishes fetching the last record. In the first row, the number
of resultant rows is 1% of the total number of records in the
table. In the second row the result includes 10% of the number
of records in the table, and in row 3 the number is 30%. We
see in the Improvement column that, by using the SINCA
algorithm, we can get better results when there are more of
resultant rows. The improvement is over 5 times when the
number of result records is 30% of the input records.

 6

TABLE 2

Number of
groups

Response Time (in milli seconds)
Prior Art SINCA Improvement

50001 (1%) 410.902 49.274 4.1
499979
(10%)

2467.583 116.853 21.1

1446523
(30%)

4386.6 134.202 32.6

 In Table 2, the response time for normal parallel aggregation
algorithm is compared against the corresponding SINCA
result. The response time is the time taken by the query
execution from the start of the query execution to the output
of the first record. As in SINCA a single-phase query
execution is used, as compared to two phases in the prior art
algorithm, the response time improvement is more than 32
times than the normal parallel algorithm.

V. CONCLUSIONS
We have demonstrated that new hardware capabilities of
contemporary processor chips can be put to good use while
performing group-by aggregated queries on massive data. We
presented a method of parallelized query execution, that
benefits from large memory size, can utilize multiple
processor cores and local memory banks efficiently, and
yields well to vectorized processing with SIMD hardware. We
reported on performance experiments showing that the
response time can be improved by as much as 32 times,
compared to traditional methods, if there are a large number
of groups. The throughput is increased significantly also.

REFERENCES
[1] J. Chan, C. Hayes, and E. M. Daly, "Decomposing discussion forums

and boards using user roles". in Proc. ICWSM, 2010.
[2] Marcel Karnstedt, Scalable Social Analytics for Online Communities,

[online] http://stcsn.ieee.net/e-letter/vol-1-no-2/scalable-social-
analytics-for-online-communities.

[3] Puneet Jain, Justin Manweiler, Arup Acharya, and Romit Roy
Choudhury. "Scalable Social Analytics for Live Viral Event
Prediction", Association for the Advancement of Artificial Intelligence
(2014).

[4] Cagri Balkesen, and Jens Teubner, "Main-memory hash joins on multi-
core CPUs: Tuning to the underlying hardware", Technical Report Nr.
779, Systems Group, Department of Computer Science, ETH Zurich,
November 30, 2012.

[5] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten, "Optimizing
database architecture for the new bottleneck: memory access", in The
International Journal on Very Large Data Bases 9:3 (2000): 231-246.

[6] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann,
"Massively Parallel Sort-Merge Joins in Main Memory Multi-Core
Database Systems", Proc. VLDB Endow. 5:10 (June 2012):1064-1075,
2012.

[7] T. Kiefer, B. Schlegel, and W. Lehner, "Experimental evaluation of
NUMA effects on database management systems", in BTW, 2013

[8] D. E. Knuth, The Art of Computer Programming, Vol.III: Sorting and
Searching. Addison-Wesley, page 80, Ex. 13, 1973.

[9] Craig Freedman, "Introduction to Parallel Query Execution", [online]
http://blogs.msdn.com/b/craigfr/archive/2006/10/11/introduction-to-
parallel-query-execution.aspx

[10] William H Waddington and Jeffrey I Cohen, “Method and apparatus
for parallel processing aggregates using intermediate aggregate
values,” U.S. Patent 5,850,547, December 15, 1998.

[11] D.E Ott, “Optimizing Software Applications for NUMA”, Whitepaper
(Intel), 2009

