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Abstract — Analytical processing of various information 
created in the operation of social media requires queries 
involving grouping and aggregating of large volumes of detail 
data. Any advanced query processing method should take into 
account two dominating hardware trends: increasing main 
memory capacities and increasing parallel processing capacity 
exposed as growing number of cores per processor chip. We 
introduce a scalable in-memory method for data aggregation 
(SINCA), using clustered operators, which profits from the 
hardware trends.  The method uses a concept of a microengine 
being a set of resources that can be utilized in parallel, with great 
efficiency.  The resulting parallelized aggregation algorithm is 
characterized by a low overhead and high volume, and is suitable 
to both real-time and extract-transform-load scenarios. The core 
idea of the method is to use real-time histograms to partition the 
data for grouping.  As the data is already grouped during the 
partitioning phase, the group aggregation can be done very 
efficiently. Additionally, some of the grouped data can be cached 
for re-use in subsequent queries. 

I. INTRODUCTION 
With the pervasive usage of social networking sites, the events 
getting generated come in larger and larger sets. A new 
industry termed “big [social] data analytics” has emerged 
around the existence of such large data. These large, 
unstructured, heterogeneous data sets have to be churned to 
derive “values” contained in it. The derived value helps 
people to gain better insights, which can be used to define and 
derive new business models. There are two important aspects 
that must be taken care of while deriving values from such 
events. Firstly it is hard to ignore the fact that the pace at 
which these events get generated make the older data outdated 
and stale very soon. Thus “freshness” is an important attribute 
of the extracted information in today’s digital era. Secondly 
because of the abundance of data generated from various 
streams in social media, summarization is needed. The data 
has to be grouped and aggregated to bring out a bigger picture. 
For example, role analysis (which analyses the percentages of 
different roles that are assumed by community users over 
time[1]), behavioral analysis[2], market segmentation, viral 
event prediction and CDN (Content Delivery Network) data 

prefetch [3], etc. depend directly or indirectly on grouped data 
analysis.  

The industry has responded to this massive amount of data 
by creating methods of pipeline-based processing. Multiple 
mechanisms ranging from stream processing to massive 
history data processing have emerged. Variations like real-
time processing, massive batch processing is also prevalent.  

There have been significant, fast paced advancements in the 
hardware front over the past few years. A major trend, though 
not new, is to increase the processing capability of the system 
by adding more and more cores into a single system. NUMA 
(Non-Uniform Memory Access) based system is an evolution 
of such a trend. Apart from increasing the processing power, 
large RAM capacities and faster, larger caches, SIMD (Single-
Instruction, Multiple-Data stream) execution, etc. have been 
forcing analytical database designers to relook the designs.  
These trends are fostering in-memory solutions to be cheaper 
and more viable options than disk-based solutions.  This 
would effectively remove the bottlenecks associated with I/O 
and make the data available for operation in memory. 

However, to tackle large volumes of data in real time, along 
with the hardware capabilities, it is required to have improved 
algorithms to harness them. We focus on meeting the 
challenges of large hierarchical memories and NUMA 
architecture in the context of grouped aggregation. Grouped 
aggregation is in the center of analytical data processing by 
producing highly summarized results. In SQL, grouped 
aggregation is exposed by the use of aggregate functions like 
AVG() and the GROUP BY clause. 

In this paper we propose a two-phased, intra-query 
parallelized group aggregation algorithm. We call this new 
radix-cluster-based algorithm Scalable In-memory NUMA 
aware Clustered Aggregation algorithm (SINCA algorithm). 
We introduce an intra-query parallelization engine, referred to 
as microengine (ME). Microengine is a thread operating on 
local memory. By way of pre-defined core affinity, the thread 
can execute a parallel part of the algorithm on a data partition 
residing in local memory.  In SINCA, the data to be grouped 
is partitioned (clustered) to minimize the synchronization 
overhead. The algorithm can make use of vectorized code 
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execution too and thus is suitable for exploiting both the 
SIMD instructions and thread level parallelism available in 
today’s multi-core processors. In the first phase, the 
microengine based intra-query parallelization is used to 
reduce the impact of NUMA and multi core synchronization 
overhead. In the second part, a histogram-based radix cluster 
is used to group the input data into smaller subsets to 
maximize the use of pipelining, SIMD and local memory 
caches. 

We implemented and evaluated the SINCA algorithm on an 
in-memory column store database, and we measured the time 
taken for group aggregation query. By using our method, the 
time taken to execute a query and fetch all the records is 
decreased at least by 1.4 times compared to normal parallel 
group-by algorithms. The improvement increases with the 
increase in number of groups and it reaches 5 times with 1.44 
million groups. By using our new method, the time taken to 
execute the query and fetch the first set of records (query 
response time) is decreased at least by 4 times, compared to 
normal parallel group-by algorithms. The improvements 
increases with increase in number of groups and it reaches 32 
times with 1.44 million groups.  

This paper is arranged as follows. In Section II, the related 
work is presented. The detail implementation and motivation 
for the clustered group aggregation algorithm is described in 
Section III. In Section IV, experimental results are reported. 
Section V concludes the paper.  

II. RELATED WORK 
Grouped aggregates are resource-consuming operations. Their 
best case complexity lies in O(n. log n). Hence it is beneficial 
to parallelize their execution. Grouped aggregates are by 
nature materialized. That is to say that all the input data for 
the grouping have to be materialized and only then the 
aggregate results can be produced. This materialized nature of 
the grouped aggregates makes parallelization of grouped 
aggregates difficult. The following diagram (Fig. 1) shows the 
prior art. In this implementation the last step “FINAL 
AVERAGE” is an obstacle:  

1. It makes the execution wait until the final step is over, 
thereby introducing the latency 

2. The final step is generally executed on a single thread, 
thereby making this step the bottleneck. 

Substantial work has been done to improve the performance 
of group aggregation. The key trend has been towards 
parallelizing this building block, as in intra operator 
parallelism. Be it commercial disk database, e.g. Microsoft 
SQL server [9] or a patented idea [10], there has been 
substantial development and interest in parallelizing the 
grouping operation by splitting the data to number of threads. 

However there is no known work done to tune the group 
aggregation query for in-memory execution and to make use 
of current hardware improvements. 

. 

Fig. 1. Query execution in prior art. 

Processors are equipped with SIMD hardware allowing to 
performing so-called vectorized processing that is, executing 
the same operation on a series of closely adjacent data. 
Current parallel grouped aggregate methods use SIMD in a 
limited way to compute the aggregates. This paper suggests 
using SIMD more widely in the query processing. 

Columnar stores store each column separately. A notional 
row is bound by row-ids shared by the column constructs. 
Traditional repartition techniques involve copying of the 
columns on which grouping is done and also the columns 
which need to be aggregated. Such a model does not leverage 
the storage layout of columnar databases. 

As hardware trends involve putting more and more 
processors and cores into a single chip, the processing 
capacity of the system has been growing. As suggested in [6], 
the trend is shifting towards multi-core utilization rather than 
on speeding up individual CPUs. In [6] and [7], authors 
emphasize data placements and data movement to gain 
scalability and high performance on NUMA based systems. 
The tests reported in [7] ascertain the claims.  

There are also improvements in the capabilities of other 
hardware components, like larger caches, increased RAM 
memory and larger TLB, and huge page support. As per the 
experiments and study put forth in [5] and the case studied 
further in [4], it is necessary to tune the software to tame the 
hardware power. In [4] and [5], an approach is taken to 
perform grouping by splitting and repartitioning the data using 
radix clustering, so that the data fits within the TLB better, 
and avoiding cache misses while using the data. The crux of 
the performance lies in choosing suitable radix bit for the 
radix clustering [8]. 

In this work, we built upon existing algorithms [9] [10] and 
increased the emphasis on better accommodation of NUMA, 
SIMD, TLB, and cache consciousness.  

III. SINCA ALGORITHM 
We have designed a multi-threaded NUMA aware method 
utilizing parallel processing units called microengines (MEs). 
A microengine executes one of many parallel threads on a 
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data partitioin that is local to the core the microengine is 
running on.  
   The algorithm starts with creating a histogram on the data to 
be grouped and aggregated. This histogram’s output lets the 
query planner to decide the applicability of the SINCA 
algorithm. SINCA is suitable for calculating grouped 
aggregate on groups where cardinality of each group is 
roughly the same.  Next we use a radix clustering method to 
cluster the data based on a particular column’s value. The 
number of radix bits (b) to be used for the clustering is chosen 
in such a way that it can exploit the cache and TLB as 
suggested in [5]. Also, as part of clustering, the data (or 
records) from various NUMA memory banks are moved to a 
common memory bank based on the radix cluster number. 
This step is critical to exploit the advantages of NUMA 
memory access and achieve maximum scalability. Since the 
operation in one group will not interfere with the one in 
another group, contention is completely eliminated. Next, 
these clusters are fed to ME threads, which are bound to the 
core on which the data is local and execute the aggregation 
algorithm. This step is completely contention-free as the data 
on which each thread works is already clustered and the 
aggregation calculation on one cluster is totally independent 
of the data in other group. Also the cache and TLB usages will 
be superior because of the size of the cluster chosen. 
 
In Fig. 2, the flow of data in the SINCA algorithm is shown. 
The input data can be table data or can be data streamed from 
real time event sources. In case of table data, the clustering 
phase creates a separate copy of NUMA-aware clustered data 
required for the group aggregation. In case of streamed data, 
the data can be partitioned to different clustered during 
insertion. The figure depicts the data storage in a 2 socket 
NUMA machine having 4 processors. As the chosen cluster 
size is based on the system information, the data for hash table, 
aggregated value and the final result can be accommodated 
inside processor cache to improve the query execution speed.  
The final output can be streamed to the next phase when the 
results from each processor are ready and the processors can 
start working on the next cluster. 
 

 
 

Fig. 2. SINCA query execution 
 

In Fig. 3, the notional query plan generated during the 
execution of the SINCA algorithm is shown. The SINCA 
distributor node parallelizes the execution of the aggregation.  
The Scan nodes in the bottom of the query tree operate on the 
clustered data from each memory bank and feed the results to 
the parent nodes for processing. 

In the rest of the section we will explain, in detail, the 
algorithm. 

A. Microengine based Intra Query Parallelisation 
Most database systems are constructed in such a way that each 
query is executed in a separate thread. This is called a thread-
per-query model. In an analytical system, the queries can be 
rare but very complex. The query response time becomes an 
important performance indicator. If the thread-per-query 
model is used in a modern system having a large number of 
processor cores, the cores can be left unutilized and the 
response time can remain poor. To cope with this problem, we 
introduce operation-level parallelism: each query is split to a 
number of subthreads (called microthreads) that are executed 
concurrently in different cores.  

 
 

Fig. 3. SINCA query execution 
 
 This microthread model is illustrated in Fig. 4, where it is 
contrasted with the thread-per-query model. 
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Fig. 4. Query execution in a) the traditional thread-per-query model and in b) 
the microthread model. 

It is not sufficient to just make the operation parallel. With 
increasing size of physical memory, the time to access the 
memory has increased drastically. With new systems having 
non-uniform memory partition, it is now more and more 
important to keep the memory access local.  

The problems with caches are that they do not end with 
cache misses. If the same memory location is copied to more 
than one cache, writing to that location is subject to cache 
coherency protocol. That protocol, executed by the on-chip 
hardware, has the purpose of ensuring that no concurrent 
conflicting writes (to two different copies of a memory 
location) can happen. The protocol, typically, invalidates the 
old copies of the same memory location, so that other threads 
cannot use them. It is only when all invalidation messages are 
acknowledged, that the data item can be written into the cache. 
The cache protocol has to be executed across all the sockets in 
the system, and thus, it has to use the socket interconnect 
mechanism (In Intel, it is called QPI – QuickPath Interconnect) 
(Fig. 5).  

 
Socket 1 Socket 2

Memory bank 1 Memory bank 2  
Fig. 5. Illustration of the memory hierarchy and inter-socket communication 
components in a processor (Intel Nehalem). 

 
All of this can increase the duration of a write operation by 
one or two orders of magnitude, depending of the system size 
and load situation. The protocol affects also the memory read 
operations: the next access to the invalidated data will cause a 
cache miss. The best way to avoid the intervention of the 

cache coherency protocol is to make the cached data private 
— when there are no other cached copies at all. This is what 
all cache-sensitive algorithms try to do.  
The problems with the hierarchical storage do not even end 
here. As can be seen in Fig. 5, different parts of main memory 
(memory banks) are connected to different sockets. The time 
to access the socket's local memory bank is much shorter 
(about a half) compared to accessing a remote memory bank. 
The solution is called NUMA (Non-Uniform Memory 
Architecture) and was introduced to avoid a bottleneck caused 
earlier by a single memory bus. With NUMA, on-chip 
memory controllers allow for fast access to the local memory 
bank. The solution works well if the threads running on a chip 
predominantly use local memory. However, if the remote 
memory is accessed, the NUMA penalty has to be paid. It is 
not only in the form of longer access times. Because the data 
requested from remote memory banks flows through the same 
socket interconnect mechanism that is used by the cache 
coherency protocol, that mechanism can become the single 
most damaging bottleneck in the system. 

 The microengine-based system comes handy in these 
scenarios. As the data is partitioned at run time, only adjacent 
data are feed to each microengine. This ensures that each 
microengine accesses only local data and do not touch data 
accessed by other microengines. The number of microengines 
can be configured to be dependent on the amount of data and 
load on the system. With no shared access to data, the 
microengine based system reduces the system cache 
contention drastically. This makes the query execution faster. 

B. Radix Clustered Group Aggregation  
The major problem in parallel algorithm is synchronisation 
overhead. The first kind of synchronisation overhead is related 
to data dependency. The problem with data dependency can 
be avoided using data partitioning, as we have discussed in the 
previous section. But there is a bigger problem with respect to 
data dependency when the final output depends on the whole 
of the data, like in grouped aggregation. Because of the 
interlining of the result with the whole of data, most of the 
parallel grouped aggregation algorithms operate in a two-
phase manner as discussed above. These two-phase algorithms 
make use of the multiple cores in the first phase but merge 
back to a single-thread operation in the second phase and thus 
make the system underutilised. In SINCA algorithm we have 
removed the second phase of normal group-by algorithm by 
partitioning the input data based on group-by column. The 
detailed algorithm has three steps. The first step is distributing 
the input data based on radix bits. The next step is preparing 
the data for each microengine. This step makes a copy of the 
input data which will be used for aggregation and grouping. 
The final step is the actual grouped aggregation operation by 
each microengine and projection of the result.  

We are applying radix clustering methods to cluster the 
input data using a fixed number of bits, called the radix bits, to 
create clusters that are groups of adjacent values having the 
same radix bits. If the number of radix bits is n, then the 
number of clusters generated is 2n. In the example, two least 
significant bits are used, resulting in four clusters (Fig. 6). 
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Each cluster carries the GROUP BY columns values and the 
corresponding row_IDs. The radix bits are chosen using the 
single scan analysis of the input data to make the clusters 
small enough to fit into the system cache. Radix clustering 
makes clusters independent for group aggregation calculation. 
With the clustered data fitting into cache size, all the group 
aggregation processing can be done inside cache and thus 
improve the query execution speed.    

 

Fig. 6. Grouping of records based on radix cluster. 

 
Each thread continues on a cluster by expanding it with 
aggregate columns. Since each thread operates on data 
existing in its NUMA node, the projection operation is 
NUMA-friendly. The following diagram (Fig. 7) shows the 
projection performed by three threads on three local clusters. 
 

 

Fig. 7. NUMA friendly storage of cluster data. 

 
A single total cluster (a combination of local clusters) is 
spread across discontinuous memory. This is because each 
thread individually performed the clustering. A thread which 
will perform the grouping on a single total cluster will need to 
gather all these cluster data. The gathering is done by the 
thread obtaining the starting address and the number of items 
in that address (Fig. 8). The table data is not copied. Even if 
the piece of a total cluster is present in the remote node, the 
access is going to be sequential and, thus, very efficient. 

The grouping can be done by any method (Hash, Sorted or 
nested loop). The group aggregation can be done in parallel, 
independently for each total cluster.  

 

 
Fig. 8. Projected data from cluster with radix bits 00. 

The aggregation is done by looking up the aggregation 
column values present in the clustered data. The grouped 
aggregate for one cluster (of cluster no. 01) is shown here (Fig 
9). 
 

550
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Fig. 9. Group aggregate 

 

IV. EXPERIMENTAL RESULTS 
The experiment has been performed on an in-memory column 
store database. The database table has 5 columns of integer 
type. The dataset includes 5 million rows. The experiment is 
done to measure the total execution time and the response 
time of the first result row. We have done the experiments on 
three different group sizes. The group size depends on the 
number of distinct values in the input data.  

TABLE I 

Number of 
groups 
 

Execution Time (in milli seconds) 
Prior Art SINCA Improvement 

50001 (1%) 410.902 293.141 1.4 
499979 
(10%) 

2467.583 511.594 4.8 

1446523 
(30%) 

4386.6 849.652 5.1 

 
In Table 1, the execution time for prior art parallel group 
aggregation is compared against the result of SINCA. Here, 
the time is measured from start of query execution to the time 
it finishes fetching the last record. In the first row, the number 
of resultant rows is 1% of the total number of records in the 
table. In the second row the result includes 10% of the number 
of records in the table, and in row 3 the number is 30%. We 
see in the Improvement column that, by using the SINCA 
algorithm, we can get better results when there are more of 
resultant rows. The improvement is over 5 times when the 
number of result records is 30% of the input records.  
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TABLE 2 

Number of  
groups 
 

Response Time (in milli seconds) 
Prior Art SINCA Improvement 

50001 (1%) 410.902 49.274 4.1 
499979 
(10%) 

2467.583 116.853 21.1 

1446523 
(30%) 

4386.6 134.202 32.6 

 
   In Table 2, the response time for normal parallel aggregation 
algorithm is compared against the corresponding SINCA 
result. The response time is the time taken by the query 
execution from the start of the query execution to the output 
of the first record. As in SINCA a single-phase query 
execution is used, as compared to two phases in the prior art 
algorithm, the response time improvement is more than 32 
times than the normal parallel algorithm. 

V. CONCLUSIONS 
We have demonstrated that new hardware capabilities of 
contemporary processor chips can be put to good use while 
performing group-by aggregated queries on massive data. We 
presented a method of parallelized query execution, that 
benefits from large memory size, can utilize multiple 
processor cores and local memory banks efficiently, and 
yields well to vectorized processing with SIMD hardware. We 
reported on performance experiments showing that the 
response time can be improved by as much as 32 times, 
compared to traditional methods, if there are a large number 
of groups. The throughput is increased significantly also. 
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