20167161810 A 1[I 10 DA 0100 0000 0

o
=

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau %

13 October 2016 (13.10.2016)

AT 0O A

(10) International Publication Number

WO 2016/161810 A1

WIPOIPCT

(51

21

(22)

(25)
(26)
(30)

(7

(72)

81

International Patent Classification:
GO6F 9/44 (2006.01)

International Application Number:
PCT/CN2015/095796

International Filing Date:

27 November 2015 (27.11.2015)
Filing Language: English
Publication Language: English
Priority Data:
EP15162564.7 7 April 2015 (07.04.2015) EP

Applicant: HUAWEI TECHNOLOGIES CO., LTD.
[CN/CN]; Huawei Administration Building, Bantian,
Longgang District, Shenzhen, Guangdong 518129 (CN).

Inventors: GOIKHMAN, Shay; ¢/o Huawei Technologies
Duesseldorf GmbH, Riesstr. 25, 80992 Munich (DE).
WOLSKI, Antoni; ¢/o Huawei Technologies Duesseldorf
GmbH, Riesstr. 25, 80992 Munich (DE). LEVY, Eliezer;
¢/o Huawei Technologies Duesseldorf GmbH, Riesstr. 25,
80992 Munich (DE). ILIOPOULOS, Anthony; c¢/o Hua-
wei Technologies Duesseldorf GmbH, Riesstr. 25, 80992
Munich (DE).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

Published:
with international search report (Art. 21(3))

(54) Title: METHOD AND APPARATUS FOR TRACKING OBJECTS IN FIRST MEMORY

3 13 1 1 |
1 3 ;3 1
1 I I 1
41 bj1 obj2 bi3 bj4 42
- : : ; S
d chagged 1 1 chayged
1 | 1 I h
- ‘/A\-\ : : \/ j\ \
X) » ¥
124 i \i : A I 21
i i i 1 N1
! ! ! &
B i i i ES 53
! ! ! H \ 2
134 1 I
: char{{ued\M charf:ged\ s : TN 62
H *."\<s4 \,*\iss N N;
1 i I 1
FIG. 1 . . s s
N

(57) Abstract: A method for tracking objects in a first memory during a plurality of time intervals is provided, the objects compris -
ing one or more status variables, wherein the method comprises the steps: updating, by one or more update threads, the status vari -
ables of changed objects, which are objects that have changed during a current time interval, creating, by one or more test threads,
when a new time interval starts, for each object a shadow object that captures a state of the object and that corresponds to the object,
evaluating, by the one or more test threads, status variables of the shadow objects to determine one or more non-copied shadow ob-
jects that comprise non-copied changes, copying, by the one or more test threads, the one or more non-copied shadow objects to a
second memory, determining, by the one or more test threads whether the step of copying the one or more non-copied shadow ob -
jects was successful, and updating, by the one or more test threads, the status variables of corresponding objects that correspond to
the one or more non-copied shadow objects that were copied successtully, wherein subsequent bits of the status variables correspond
to subsequent time intervals and wherein the one or more update threads and the one or more test threads operate on disjoint sets of
bits of the status variables.

WO 2016/161810 PCT/CN2015/095796
1

METHOD AND APPARATUS FOR TRACKING OBJECTS IN FIRST MEMORY

TECHNICAL FIELD

[0001] The present invention relates to a method and an apparatus for tracking objects in a first
memory during a plurality of time intervals. The invention also relates to a comput-
er-readable storage medium storing program code for carrying out a method for tracking
objects in a first memory during a plurality of time intervals.

BACKGROUND

[0002] Hardware advances have enabled many important high update rate transaction appli-
cations to execute completely in-memory. Such applications include event processing
systems, electronic trading systems, multiplayer games, service control applications in
telecom, measurement systems, scientific simulations and many others.

[0003] The durability of update transactions in these applications is typically provided by a
periodic checkpointing process that flushes a consistent memory state to a persistent
storage, and a logical redo log that records all the modification requests between consec-
utive checkpoints. In case of a system failure, a restore process uses the latest persistent
checkpoint to initialize the memory state, and a replay procedure, to replay the redo log to
re-create the application state at the point before the time of the failure.

[0004] In such high update rate systems, checkpoint efficiency and the lack of obstruction to
the normal application operation are crucial. The checkpointing process must be very
low-overhead and highly efficient in order not to hinder the high update rates, and to enable
frequent checkpointing. Frequent checkpointing, in turn, reduces the redo log size and its
associated log replay duration at restore-time. Because checkpoints are run repeatedly, an
incremental checkpointing method, whereby only objects changed since the previous
checkpoint are detected and persisted, is highly valued.

[0005] Typical approaches to checkpointing utilize specific methods of taking snapshot of
various granularities and therefore the logic of checkpoint management is tightly coupled
with the logic of taking the snapshot.

[0006] For example, the Copy-On-Update method groups application objects into blocks and
copies each block to the shadow state each time an object is mutated during the time in-
terval. Since the update threads are concurrently updating the application state, the update
thread needs to acquire locks on the blocks it references. By varying the memory block size,
Copy-on-Update tradeoffs between copying and locking overhead. The Copy-on-Update
method incurs large overhead and spiky latencies making it unsuitable for high-rate up-
dates. Moreover, it involves quiescing the updates for resetting the update marks and re-
cycling the memories of the shadow objects on the outset of a new checkpointing.

WO 2016/161810 PCT/CN2015/095796
2

[0007] The Wait-Free ZigZag method pre-allocates duplicate space for each tuple, and marks
which of the copies holds the snapshot of the tuple. Before the start of a new checkpoint,
the application needs to quiesce its updates in order to consistently mark one of the copies
of each tuple to serve as the next snapshot tuple.

[0008] Another popular technique is Bulk-Copy whereby the whole application state is copied
for the checkpointing. Bulk-Copy updates incur high latencies, and it is not applicable for
some applications, where, for instance, a complex object structure requires ‘deep copying’.

[0009] Experiments have shown that none of the known snapshotting methods is suitable to
sustain the whole dynamic range of update rates. All of the above-mentioned methods are
intertwined with the specific snapshot taking method, thereby featuring high complexity.
With that complexity, the definition and efficient computation of change sets may be
prohibitive. Furthermore, the prior art techniques typically result in the enforcement of
either application-specific locking or the quiescence of the updates.

SUMMARY OF THE INVENTION

[0010] The object of the present invention is to provide a method and an apparatus for tracking
objects during a plurality of time intervals that overcome one or more of the
above-mentioned problems of the prior art. It is a further object of the present invention to
provide a computer-readable storage medium storing program code for carrying out such a
method.

[0011] A first aspect of the invention provides a method for tracking objects in a first memory
during a plurality of time intervals, the objects comprising one or more status variables,
wherein the method comprises the steps:

- updating, by one or more update threads, the status variables of changed objects, which

are objects that have changed during a current time interval,

- creating, by one or more test threads, when a new time interval starts, for each object a
shadow object that captures a state of the object and that corresponds to the object,

- evaluating, by the one or more test threads, status variables of the shadow objects to
determine one or more non-copied shadow objects that comprise non-copied changes,

- copying, by the one or more test threads, the one or more non-copied shadow objects to
a second memory,

- determining, by the one or more test threads whether the step of copying the one or
more non-copied shadow objects was successful, and

- updating, by the one or more test threads, the status variables of corresponding objects
that correspond to the one or more non-copied shadow objects that were copied suc-

cessfully,

WO 2016/161810 PCT/CN2015/095796
3

[0012] wherein subsequent bits of the status variables correspond to subsequent time intervals
and wherein the one or more update threads and the one or more test threads operate on
disjoint sets of bits of the status variables.

[0013] Creating shadow objects that correspond to the objects and capture the state of the
objects can be implemented for example by simply copying the objects.

[0014] Copying the non-copied shadow objects to a second memory also includes cases where
the state of the non-copied shadow objects is persisted on the second memory.

[0015] According to the first aspect of the invention, one or more update threads can update
objects, e.g. memory resident objects of an application, and mark the updated objects as
changed for the current time interval, while another set of threads, the one or more test
threads, creates shadow objects and tests the shadow objects for any previous change. The
one or more update threads and the one or more test threads work on disjoint set of bits in
the change status variables, which are marked accordingly.

[0016] Each of the objects holds a status variable that indicates whether the object is changed.
The one or more update threads and the one or more tests threads access the status variables.
In particular, the one or more update threads can access the status variables of the objects
themselves, whereas the one or more test threads access the status variables of the shadow
objects.

[0017] The method ensures that the one or more update threads and the one or more test threads
operate on disjoint sets of bits of the status variables. Therefore, race conditions, where the
outcome indeterministically depends on the timing between the involved threads, are
avoided.

[0018] In a first implementation of the method according to the first aspect, creating the shadow
objects comprises a step of forking a child process.

[0019] Forking a child process, e.g. using the fork() system call, creates a child process whose
address space serves as the snapshot. Thus a snapshot-consistent state is created. The data
of the parent process (which e.g. comprises the objects) can be lazily “replicated” in a
dynamic fashion (copy on write) with the OS page granularity whenever a data mutation
takes place. The fork-based method of creating the shadow objects exemplifies a clear
logical separation between snapshot and the computation of change-sets.

[0020] In a second implementation of the method according to the first aspect, the method is a
checkpointing method for creating persistent copies of the objects, wherein the one or more
non-copied shadow objects are copied to a persistent storage, in particular a hard disk. This
1s of particular relevance for ensuring that no changes to the objects are lost, e.g. due to a
power failure, which may affect the first memory, but not the persistent storage.

[0021] Thus, the method of the present invention can be used in the context of an incremental,
snapshot-consistent checkpoint process, which in a general setting can for example be de-
fined as follows:

WO 2016/161810 PCT/CN2015/095796
4

- There is a set of update threads that continuously modify a set of memory-resident
objects.

- Ata checkpoint time, a consistent snapshot of the application memory state is taken,
thereby capturing consistent memory state within immutable objects, called shadow
objects. The subset of the shadow objects which were modified by the update threads
relatively to the last (successful) checkpoint, called changed set, is flushed to the disk.

- If the previous checkpoint was not successful, the change sets for the current and the
previous checkpoint are united, i.e., the change set that is flushed to disk is computed as

the union of the current and the previous change sets.

[0022] In a third implementation of the method according to the first aspect, the method com-
p g p

prises a step of starting a new time interval when a checkpoint is requested. Thus, the se-
quence of time intervals corresponds to the sequence of checkpoints.

[0023] In a fourth implementation of the method according to the first aspect, the one or more
update threads update the status variables of the one or more changed objects using a mark
mask that indicates a current time interval, and/or the one or more test threads update the
status variables using a test mask that indicates previous time intervals for which copying
the one or more non-copied shadow objects was successful.

[0024] An update of an object by any thread in a time interval can be marked by the one or more
update threads setting the status variable of the object to the bitwise OR of itself and the
specific state of the mark mask at that time interval. The test whether the object is changed
can be performed by the comparing of bitwise AND of the specific test mask of the time
interval and the status variable with zero.

[0025] The test mask and the mark mask indicate different time intervals. Therefore, using
these masks to access the objects’ status variables (and the status variables of the corre-
sponding shadow objects) is one specific way of ensuring that the one or more update
threads and the one or more test threads always operate on disjoint sets of bits of the
various status variables. As outlined above, this is important e.g. for avoiding race condi-
tions and undeterministic behavior of the method.

[0026] In a fifth implementation of the method according to the fourth implementation of the
first aspect, updating the mark mask comprises atomically rotating its bit values and up-
dating the status variables of the objects comprises assigning the status variable of the
objects OR-combined with the mark mask. Thus, the mark mask can be advanced by ro-
tating it one bit left, thereby atomically starting a new time interval. This is a particularly
efficient way of updating the mark mask and accessing the status variables using the mark
mask.

[0027] In embodiments of the invention, the test mask holds the value of the mark mask from
the last time interval during the current time interval if the last checkpoint was successful.
Thus, during the checkpointing interval newly changed objects are marked with the new

WO 2016/161810 PCT/CN2015/095796
5

mark mask, while their shadow objects are tested for change using the previous mark mask.
At the end of the time interval the test mask is set to the value of mark mask. Additionally,
the bits in the status variable that represented the change in the detected objects are reset to
zero. If the checkpoint fails for some reason, the test mask can be set to the bitwise OR of
itself and the value of the mark mask, thereby enabling the testing for the currently and
previously changed object in the next time interval.

[0028] In a sixth implementation of the method according to the first aspect, evaluating the
status variables comprises atomically evaluating a bitwise AND-combination of the test
mask and the status variables. This is a particularly efficient way of evaluating the status
variables using the test mask.

[0029] In a seventh implementation of the method according to the first aspect, the test mask is
set to the value of the mark mask when it is determined that all objects have been suc-
cessfully copied, and/or the test mask is set to the mark mask OR-combined with the test
mask when it is determined that copying of at least one of the changed objects failed.

[0030] In an eighth implementation of the method according to the first aspect, the test mask
and/or the mark mask are initialized to 1. This provides a well-defined starting point of the
method.

[0031] If there are more checkpoints and time intervals than the status variables can store, the
method can use a wrap-around, i.e. it starts again from the first bit of the status variables
and the masks. For example, if the status variables and the test mask and mark mask are
32-bit variables, these 32 bit can correspond to the first 32 time intervals, and corre-
spondingly to the first 32 checkpoints, if the method is a checkpointing method. For the
33rd checkpoint, the first bit can be used again. In other words, the time interval with
number N+1 (where N is the size of the mark mask and/or the status variables in bits)
corresponds again to the first bit of the mark mask and the status variables.

[0032] If for more than N of the previous intervals there are uncopied changes, this can lead to
the method “forgetting” some uncopied changes. Therefore, the method of the first aspect
may comprise a step of verifying whether for more than N previous intervals there are
uncopied changes, wherein N is the number of bits of the status variables, the mark mask
and/or the test mask. In that case, the method can comprise a step of generating an alert
signal, e.g. a visual and/or acoustic signal that can notify an operating person that the
checkpointing is not successful. The method can also then automatically change to a dif-
ferent approach of generating consistent checkpoints. For example, since it is no longer
possible to track new changes, it could, as an emergency measure, revert to creating copies
of all objects for each of the checkpoints. This is resource-consuming, but may be pref-
erable to not storing changed objects.

[0033] In a ninth implementation of the method according to the first aspect, the mark mask
and/or the test mask are global variables and/or the status variables of the objects are local
variables of the objects. By using local variables, it can be ensured that only the objects
themselves have access to their status variables, i.e., unauthorized access to their status
variables can be prevented.

WO 2016/161810 PCT/CN2015/095796
6

[0034] In a tenth implementation of the method according to the first aspect, the status variable
of an object and the status variable of a corresponding shadow object are shared. This al-
lows for a more efficient implementation, as unnecessary copying of the status variables
can be avoided.

[0035] In an eleventh implementation of the method according to the first aspect, updating the
status variables of the corresponding objects comprises setting one or more of the status
variables to a bitwise XOR-combination of the one or more of the status variables and the
bitwise AND-combination of the status variable and the test mask.

[0036] In a twelfth implementation of the method according to the first aspect, the status
variables of the objects are managed by the objects. This can apply both to the (original)
objects and the shadows objects that correspond to the objects. This implementation en-
sures that unauthorized access to the status variables is prevented.

[0037] According to a second aspect of the invention, there is provided an apparatus for
tracking objects in a first memory during a plurality of time intervals, wherein the appa-
ratus comprises the first memory, a second memory, a first processing core and a second
processing core, wherein
- the first processing core is configured to execute one or more update threads which

update status variables of changed objects, which are objects that have changed during
a current time interval, and,

- the second processing core is configured to execute one or more test threads which
perform the steps:

- when a new time interval starts creating for each object a shadow object that captures a
state of the object and that corresponds to the object,

- evaluating status variables of the shadow objects to determine one or more non-copied
shadow objects that comprise non-copied changes,

- copying the one or more non-copied shadow objects to a second memory,

- determining whether copying the one or more non-copied shadow objects was suc-
cessful, and

- updating the status variables of corresponding objects that correspond to the one or
more non-copied shadow objects that were copied successfully,

[0038] wherein subsequent bits of the status variables correspond to subsequent time intervals
and wherein the one or more update threads and the one or more test threads operate on
disjoint sets of bits of the status variables. In particular, the apparatus can be configured to
carry out the method of the first aspect or one of the implementations of the first aspect.
That is to say, it can be configured to comprise necessary means to carry out the the method
of the first aspect or one of the implementations of the first aspect.

WO 2016/161810 PCT/CN2015/095796
7

[0039] A third aspect of the invention provides a computer-readable storage medium storing
program code, the program code comprising instructions for carrying out the method of the
first aspect or one of the implementations of the first aspect.

[0040] As outlined above, embodiments of the invention can impose a clear separation of
concerns between the method of taking a snapshot and the computation of change-sets. The
need to suspend update threads can be obviated. The marking overhead of the one or more
update threads can be light-weight and wait-free as no locks are used. In some embodi-
ments, all objects’ change status variables are updated atomically with bitwise operations.
In embodiments, changes can be tracked across consecutive checkpoints, with the next
checkpointing start being atomic and instantaneous. The correctness of the method, in-
cluding avoidance of race conditions, is implied by its design. Finally, the above features
can imply an idempotent checkpoint: despite the failures, all data object changes are per-
sisted.

BRIEF DESCRIPTION OF THE DRAWINGS

[0041] To illustrate the technical features of embodiments of the present invention more clearly,
the accompanying drawings provided for describing the embodiments are introduced
briefly in the following. The accompanying drawings in the following description are
merely some embodiments of the present invention, but modifications on these embodi-
ments are possible without departing from the scope of the present invention as defined in
the claims.

[0042] FIG. 1 shows a schematic illustration of a method of persisting object changes during a
plurality of time intervals in accordance with the present invention,

[0043] FIG. 2A shows a flow chart of method steps that are carried out by one or more test
threads according to an embodiment of the present invention, and

[0044] FIG. 2B shows a flow chart of method steps that are carried out one or more update
threads according to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE EMBODIMENTS

[0045] FIG. 1 provides an illustration of a checkpoint method, where a plurality of four objects
31, 32, 33 and 34 are tracked over four time intervals 11, 12, 13. The first time interval 11
precedes the first checkpoint 21. The second and third time intervals 12, 13 are defined as
the intervals between first, second and third checkpoint 21, 22, 23. The fourth time interval
14 comes after the third checkpoint 24. The first and fourth objects 31, 34 are changed
(indicated with reference numbers 41, 42) in the first interval 11. The fourth object is
changed 43 again in the second interval 12. In the third interval 13, the second and third
object 32, 33 are changed 44, 45.

WO 2016/161810 PCT/CN2015/095796

[0046] In the first time interval 11 (that ends at the time of the first checkpoint 21), the change
sets consist of the first and fourth object 31, 34, i.e., the objects that were modified before
the first checkpoint 21. At the time of the first checkpoint, i.e., when the second time in-
terval is started the objects are marked as changed relatively to the first checkpoint. The
change set consisting of the first and fourth object 31, 34 is persisted successfully during
the second time interval.

[0047] On the outset of the third time interval the change set consisting of the fourth object is
detected, 1.e., it is detected that obj4 has been modified between the first and second
checkpoint 21, 22. It is attempted to flush the second change set to disk. That results (for
some unknown reason) in a disk write failure. In the fourth time interval 14, the computed
change set consists of the second, third and fourth object 32, 33, 34. This change set results
from the union of the fourth object 34 that failed to persist in the third time interval 13 and
the change set consisting of the second and third object 32, 33 that is detected as changed in
the third time interval 13.

[0048] In general, applying the ‘separation of concerns’ concept, the method of snapshot
capture needs not be of the checkpointing method’s concern, as long as a consistent im-
mutable replica of the state of the objects is created.

[0049] At the outset of a new checkpoint, the status variables of the objects that have changed
relatively to the last checkpoint need to be retained, together with the marking of all the
objects as unchanged for the duration of the forthcoming checkpoint, all these in the
presence of multiple parallel updates.

[0050] FIG. 2A is a flow chart of the method steps that are carried out by a test thread. The
embodiment shown in FIG. 2A is an example of an in-memory database fork()-based,
snapshot-consistent and incremental checkpoint method.

[0051] In the following, change_mark_mask is an example of a mark mask, change_test_mask
is an example of a test mask, change_status, change_status_i and change_status_j are
examples of status variables of the objects and/or the shadow objects.

[0052] There are several threads running in the database with one of them, called the test thread,
managing the execution of an incremental checkpoint. The test thread rotates a
change_mark_mask in step S10, forks a child process in S20, thereby creating a consistent
snapshot with shadow objects that correspond to the objects of the parent thread, and then
in step S30 the parent test thread waits for the child process to report its exit status.

[0053] In step S25, the control flow depends on whether it is the parent or the child process is
executed.

[0054] In step S50, the child process traverses all shadow objects in the application state testing
if they have been changed using the change_test_mask. This is done by ANDing the
change_test_mask with the object's change_status member variable. If the result is
non-zero, it means that a change is detected, and, subsequently, that shadow object is per-

WO 2016/161810 PCT/CN2015/095796

9

sisted to the file system as a new file, while copying the existed file to a backup copy (step
S60). The checkpoint is considered successful if all the new files are safely stored in the file
system. Otherwise, if any of the new files fails to be stored in the file system, all of the
backup copies are restored as the current checkpoint files (step S80). In that case the child
process exits and reports a failure as its exit status.

[0055] Upon the exit of the child process, the parent process wakes up (step S30) and tests the

exit status of the child process. If the exit status is successful, the parent process clears all
the bits in the change_status that represented the change in the changed objects (step S100).
That is to ensure a clean state when the change_mark_mask overwraps. The overwrapping
can occur e.g. when the number of time intervals is larger than the size (in bits) of the mark
variable and/or the mark mask.

[0056] Then, in step S110 the parent process sets the change_test_mask by using the value of

change_mark_mask. Normally, after a successful checkpoint, only one bit is left in the
change_test_mask. If the checkpoint was not successful, the change_test_mask is ORed
with the change_mark_mask, thereby uniting the current change set with the previous one.
That occurs in step S90. Multiple 'ones' in the change_test_mask indicate that one or more
consecutive checkpoints have failed. Finally, the test thread sets to wait for the next
checkpoint request.

[0057] In the following, the execution of the method is illustrated with specific example values

of the status variables change_status_i and change_status_j , the test mask
change_test_mask and the mark mask change_mark_mask. In the example, it is demon-
strated how the values of the involved status variable and masks evolve during two time
intervals following the initialization of the system. We follow the change status of two
objects: O1 and Oj. We also assume that the first checkpoint effort fails which results in the
need to eventually checkpoint data objects changed during two time intervals. The second
checkpoint effort succeeds. For brevity of the example, 4-bit values are used.

Initial values upon system initialization are:
change_test_mask = 0001
change_mark_mask = 0001

We assume that there are two data objects Oi and Oj. Their respective status variables initially
have the value of zero:

change_status_i = 0000

change_status_j = 0000

Assume the object Oi is updated before the first checkpoint request is issued. That results in
setting its change_status in the following way:

change_status_i € change_status_i OR change_mark_mask

change_status_i = 0000

OR

change_mark_mask = 0001

change_status_i = 0001

WO 2016/161810 PCT/CN2015/095796
10

[0058] In step S10, upon a new checkpoint request, the main test thread is activated and
change_mark_mask is rotated left and becomes [0010]. In step S20, the test thread forks a
child process and, in the parent process, waits for the child process to exit (step S30).

[0059] In step S40, the object Oj is updated by an update thread, in the parent process. First, it is
checked that the change has not been marked already. That is to protect against unneces-
sary writes.

change_status_j = 0000

AND

change_mark_mask = 0010

Result = 0000

Because the result was zero (no change recorded), the change is recorded, for the object Oj:
change_status_j = 0000

OR

change_mark_mask = 0010

change_status_j = 0010

Note that this change is not visible in the child (forked) process. Meanwhile, in the child pro-
cess, the checkpoint processing takes place. In step S50, all data objects' change_status
members are tested (with AND) against the change_test_mask. If the result is non-zero, the
given object is persisted.

change_status_i = 0001

AND

change_test_mask = 0001

Result = 0001

change_status_j = 0000 (the value visible in the child process)
AND
change_test_mask = 0001

Result = 0000

[0060] The objects whose change test result is non-zero are persisted. In this case, the object Oi
is persisted during this time interval.

[0061] In step S60, a backup copy of the existing persistent object Oi is created, in persistent
storage. Then, the object O1 itself is persisted.

[0062] At this point we assume the child process of the test thread has failed for some reason,
e.g. an I/O error. The backup copy of the object O1 is restored in place of the persisted one,
to revert to the state before the checkpoint has started (step S80). Then, the child process of
the test thread exits with the 'failed' exit status.

[0063] The test main thread tests the child's exit status and, because it 'failed’, it replaces the
change_test_mask with the result of change_mark_mask OR change_test_mask (step S90).

WO 2016/161810 PCT/CN2015/095796
11

change_test_mask €< change_mark_mask OR change_test_mask
change_mark_mask = 0010

OR

change_test_mask = 0001

change_test_mask = 0011

[0064] At the next checkpoint request, a new time interval starts. The change_mark_mask is
rotated left by the test thread and it becomes [0100] (step S10).

[0065] In step S20, the test thread forks a child process and, in the parent process (determined
in step S25), waits for the child process to exit (step S30).

[0066] Let us assume that the object Oj is updated in the update thread, at this time. The cor-
responding change bit is set.

change_status_j = 0010

OR

change_mark_mask = 0100

change status_j=0110
[0067] Note: this change is visible only in the parent process.

[0068] Meanwhile, in the child process, the checkpoint processing takes place. In step S50, all
data objects' change_status members are tested (with AND) against the change test_mask.
If the result is non-zero, the given object is persisted.

change_status_i = 0001

AND

change_test_mask = 0011

Result = 0001

change_status_j = 0010 (the value visible in the child process)
AND
change_test_mask = 0011

Result = 0010

[0069] The objects whose change test result is non-zero are persisted. In this case, both objects
Oi and Oj are persisted during this time interval.

[0070] In step S60, first, a backup copy of the existing objects O1i and Oj are created, in per-
sistent storage. Then, the objects Oi and Oj are persisted.

[0071] This time, the checkpoint is executed successfully. The backup copies of O1 and Oj are
discarded (removed from the persistent storage) (step S70). Then, the child process test
thread exits with the 'success' exit status.

WO 2016/161810 PCT/CN2015/095796
12

[0072] FIG. 2B illustrates the method steps of an embodiment of the invention that are carried
out by the one or more update threads. An update thread uses the value in
change_mark_mask to test whether the object’s change_status is already updated. That is
to avoid unnecessary cache line invalidation and update serialization in the case the ob-
ject’s change_status has already been updated by this thread, or other concurrent threads
modifying the change_status simultaneously. If the change_status has not been updated
(determined in step S5), it is updated in step S40.

[0073] The foregoing descriptions are only implementation manners of the present invention;
the protection of the scope of the present invention is not limited to this. Any variations or
replacements can be easily made by persons skilled in the art. Therefore, the protection
scope of the present invention should be subject to the protection scope of the attached
claims.

WO 2016/161810 PCT/CN2015/095796
13

CLAIMS

A method for tracking objects in a first memory during a plurality of time intervals, the
objects comprising one or more status variables, wherein the method comprises the
steps:

- updating, by one or more update threads, the status variables of changed objects,
which are objects that have changed during a current time interval,

- creating, by one or more test threads, when a new time interval starts, for each
object a shadow object that captures a state of the object and that corresponds to
the object,

- evaluating, by the one or more test threads, status variables of the shadow ob-
jects to determine one or more non-copied shadow objects that comprise
non-copied changes,

- copying, by the one or more test threads, the one or more non-copied shadow
objects to a second memory,

- determining, by the one or more test threads whether the step of copying the one
or more non-copied shadow objects was successful, and

- updating, by the one or more test threads, the status variables of corresponding
objects that correspond to the one or more non-copied shadow objects that were
copied successfully,

wherein subsequent bits of the status variables correspond to subsequent time intervals

and wherein the one or more update threads and the one or more test threads operate on

disjoint sets of bits of the status variables.

The method of one of the previous claims, wherein creating the shadow objects com-

prises a step of forking a child process.

The method of one of the previous claims, wherein the method is a checkpointing
method for creating persistent copies of the objects, wherein the one or more non-copied

shadow objects are copied to a persistent storage, in particular a hard disk.

The method of claim 3, comprising a step of starting a new time interval when a

checkpoint is requested.

10.

11.

12.

WO 2016/161810 PCT/CN2015/095796

14
The method of one of the previous claims, wherein the one or more update threads
update the status variables of the one or more changed objects using a mark mask that
indicates a current time interval, and/or the one or more test threads update the status
variables using a test mask that indicates previous time intervals for which copying the

one or more non-copied shadow objects was successful.

The method of claim 5, wherein updating the mark mask comprises atomically rotating
its bit values and wherein updating the status variables of the objects comprises as-

signing the status variable of the objects OR-combined with the mark mask.

The method of one of claims 5 to 6, wherein evaluating the status variables comprises
atomically evaluating a bitwise AND-combination of the test mask and the status

variables.

The method of one of claims 5 to 7, wherein

- the test mask is set to the value of the mark mask when it is determined that all
objects have been successfully copied, and/or

- the test mask is set to the mark mask OR-combined with the test mask when it is

determined that copying of at least one of the changed objects failed.

The method of one of claims 5 to 8, wherein the test mask and/or the mark mask are

initialized to 1.

The method of one of claims 5 to 9, wherein the mark mask and/or the test mask are
global variables and/or the status variables of the objects are local variables of the ob-

jects.

The method of one of the previous claims, wherein the status variable of an object and

the status variable of a corresponding shadow object are shared.

The method of one of the previous claims, wherein updating the status variables of the
corresponding objects comprises setting one or more of the status variables to a bitwise
XOR-combination of the one or more of the status variables and the bitwise

AND-combination of the status variable and the test mask.

13.

14.

15.

WO 2016/161810 PCT/CN2015/095796

15

The method of one of the previous claims, wherein the status variables of the objects are

managed by the objects.

An apparatus for tracking objects in a first memory during a plurality of time intervals,
comprising the first memory, a second memory, a first processing core and a second
processing core, wherein
- the first processing core is configured to execute one or more update threads
which update status variables of changed objects, which are objects that have
changed during a current time interval, and,
- the second processing core is configured to execute one or more test threads
which perform the steps:
- when a new time interval starts creating for each object a shadow object
that captures a state of the object and that corresponds to the object,
- evaluating status variables of the shadow objects to determine one or
more non-copied shadow objects that comprise non-copied changes,
- copying the one or more non-copied shadow objects to a second mem-
ory,
- determining whether copying the one or more non-copied shadow ob-
jects was successful, and
- updating the status variables of corresponding objects that correspond to
the one or more non-copied shadow objects that were copied success-
fully,
wherein subsequent bits of the status variables correspond to subsequent time intervals
and wherein the one or more update threads and the one or more test threads operate on
disjoint sets of bits of the status variables,
wherein in particular the apparatus is configured to carry out the method of one of the

previous claims.

A computer-readable storage medium storing program code, the program code com-

prising instructions for carrying out the method of one of claims 1 to 13.

WO 2016/161810 PCT/CN2015/095796
1/3

LA A

41 bj1 obj2 b3 5 \’bj4

T
|

11 { chapged
|

)

-

T T
| i |
i |
L
= 7, | [y
51
\\:/\i : : 43\QM 21
12 - L) L) L] L
i | i i
L ! ! ! A o
= i 1 1 X
| | i 53
! ! ! ! s 22
13— |]
: chan:[:;ed\44 chari:ged\ 45 : 62
| , 544 55 N6 Ny
! ! ! !

FIG. 1

WO 2016/161810 PCT/CN2015/095796
2/3

on checkpoint request

v

rotate left

change _mark_mask
S10 ¢

\

fork() a child process
for checkpoint

S20

/525
Child l

Detect objects to be persisted:
_/' (obj.change_status AND
I=
S50 change test mask) = 0

$30 v
\ Backup current versions of the

Waitpid() for the child to objects to be persisted, in per-
finish sistent storage. Persist objects.

v

Checkpoint
successful?

Parent Which
process?

S60

565

Success

Failed

535 >70 \ Remove backup copies 580 \ Restore backup copies

Exit child process Exit child process

X Exit status = success Exit status = failed
Failed

Success

Child process

exit status?
S100 N Exit the child
_ : : " process
Reset the change bits used in the checkpoint:
change_status € change_status XOR
(change_staus AND change_test_mask) S85
y S90
Set the test mask for the next checkpoint: Set the test mask for the next checkpoint: /
change_test_mask € change_mark_mask OR
change_test_mask € change mark_mask
change_test_mask
/ > O <
$110))]
Continue with the main test thread FIG. 2A

(wait for the next checknoint reauest)

WO 2016/161810
3/3

Update thread

. S5
(in the parent process):
on object update

No Yes

Obj.change_status AND
change _mark_mask = 07

PCT/CN2015/095796

Set Obj.change_status €
P (obj.change_status OR
- change mark_mask)

/ 540

Continue with the
undate thread

FIG. 2B

INTERNATIONAL SEARCH REPORT

International application No.
PCT/CN2015/0957%

A. CLASSIFICATION OF SUBJECT MATTER

GO6F 9/44(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

DWPI, CNTXT, CNKI, STPOABS: memory, shadow, status,

state, update, non-copied, change,modify, thread

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A
2007 (2007-04-10)

the whole document

US 7203802 B2 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 10 April

1-15

the whole document

US 2014089259 A1 (HUAWEI TECHNOLOGIES CO., LTD.) 27 March 2014 (2014-03-27),

the whole document

WO 2014094259 A1 (HUAWEI TECHNOLOGIES CO., LTD.)26 June 2014 (2014-06-26)

I:' Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

. document defining the general state of the art which is not considered

A7 1o be of particular relevance

“g” earlier application or patent but published on or after the international
filing date

“ document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“«or document referring to an oral disclosure, use, exhibition or other
means

«pe document published prior to the international filing date but later than

the priority date claimed

wp later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be

X ;] p . ;
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

wy» document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“«&” document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

19 February 2016 02 March 2016
Name and mailing address of the ISA/CN Authorized officer
STATE INTELLECTUAL PROPERTY OFFICE OF THE
P.R.CHINA YIN,Jianfeng

6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing
100088, China

Facsimile No. (86-10)62019451

Telephone No. (86-10)62089526

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/CN2015/0957%
. Patf:nt document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
Us 7203802 B2 10 April 2007 us 2004221030 Al 04 November 2004
CA 2426606 Al 25 October 2004
Us 2014089259 Al 27 March 2014 CN 102265277 A 30 November 2011
CN 102265277 B 05 March 2014
WO 2011157156 A2 22 November 2011
WO 2011157156 A3 19 April 2012
WO 2014094259 Al 25 June 2014 CN 104246716 A 24 December 2014

Form PCT/ISA/210 (patent family annex) (July 2009)

	Bibliography
	Abstract
	Description
	Claims
	Drawings
	Search-report

