(19) World Intellectual Property Ny
Organization é
International Bureau _/

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

(43) International Publication Date / WO 2016/161809 A1
13 October 2016 (13.10.2016) WIPOIPCT
(51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
GO6F 9/40 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
. o HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
PCT/CN2015/095794 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
27 November 2015 (27.11.2015) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(25) Filing Language: English
) (84) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of regional protection available): ARIPO (BW, GH,
(30) Priority Data: GM, KE, LR, LS, MW, MZ NA, RW, SD, SL, ST, SZ,
EP15162603.3 7 April 2015 (07.04.2015) EP TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(71) Applicant: HUAWEI TECHNOLOGIES CO., LTD. DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
[CN/CN]; Huawei Administration Building, Bantian,Long- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
gang District, Shenzhen, Guangdong 518129 (CN). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
(72) Inventors: RAMAMURTHI, Prasanna Venkatesh; c/o GW. KM, ML, MR, NE, SN, TD, TG).
Huawei Technologies Duesseldorf GmbH, Riesstr. 25, Mu- Declarations under Rule 4.17:
nich, 80992 (DE). BEHERA, Mahesh Kumar; c/o Hua- , , .
wei Technologies Duesseldorf GmbH, Riesstr. 25, Munich, as 1o ap zhlc aZtIs7e.;?ntlement to apply for and be granted a
80992 (DE). WOLSKI, Antoni; c¢/o Huawei Technologies patent (Rule 4.17(i))
Duesseldorf GmbH, Riesstr. 25, Munich, 80992 (DE). Published:
(81) Designated States (unless otherwise indicated, for every — with international search report (Art. 21(3))

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(54) Title: METHOD AND APPARATUS FOR PARALLEL PROCESSING GROUP AGGREGATE FUNCTION

10 1

& materialize
s10—

Apply filter on filter columns

=

grouping column

Radix cluster based on one

o I 1

e

threads

Allocate clusters to different

™

Gather data for one cluster

=~

s18—"]

Group aggregate the cluster

~>

Project group Result

N
]

s20—"

FIG. 1

522

524

(57) Abstract: A computer-implemented method for parallel processing a group aggregate function on a set of data, comprising the

WO 20167161809 A1 || 100 A0 0O 00O 0

steps of clustering the set of data based on a grouping property of the group aggregate function to obtain a plurality of clusters, alloc -
ating the plurality of clusters to a plurality of processing threads, and processing in parallel the group aggregate function in the plur -
ality of processing threads.

WO 2016/161809 PCT/CN2015/095794

METHOD AND APPARATUS FOR PARALLEL PROCESSING GROUP
AGGREGATE FUNCTION

TECHNICAL FIELD

[0001] The present invention relates to a method and an apparatus for parallel processing a
group aggregate function on a set of data. The present invention also relates to a comput-
er-readable storage medium comprising instructions for carrying out a method for parallel
processing a group aggregate function on a set of data.

BACKGROUND

[0002] In the database domain, aggregation is a fundamental requirement in all analytical da-
tabases. Compared to complete aggregation, aggregation grouped by the values of certain
attributes is even more significant. Such operations can be termed as grouped aggregations.
Grouped aggregations are expressed in SQL using the GROUP BY clause. Such a state-
ment is used in conjunction with the aggregate functions to group the result-set by one or
more columns. The key challenge in the implementation of grouped aggregates is to de-
termine the groups and the rows corresponding to these groups. There are three
well-known implementation techniques to determine the groups: Nested Loops, Sorting,
and Hashing.

[0003] The following is a very simple example of a grouped aggregate query issued against a
table in a database, by using the aggregate function “SUM” on “sales_value” grouped by
the grouping property “pdt_id™:

[0004] SELECT SUM(sales_value), SUM(sales_pieces) FROM dimension_tab GROUP BY
pdt_id WHERE pdt_type = ‘car’;

[0005] When a query is composed of several relational algebra operators, the result of one
operator is sometimes pipelined to another operator without creating a temporary relation
to hold the intermediate result. Pipelining (or on-the-fly processing) is sometimes used to
improve the performance of the queries. Pipelining reduces the latency of a query thereby
improves the perceived user experience in some cases.

[0006] If the output of an operator operation is saved in a temporary relation for processing by
the next operator, it is said that the tuples are materialized. Thus, this process of tempo-
rarily writing intermediate algebra operations is called materialization.

[0007] Executing group aggregate functions, i.e. functions that compute grouped aggregates, is
a resource-consuming operation. The best case complexity lies in O(n-log n), where 'n' is
the number of records fed to the aggregate. Hence it is beneficial to parallelize their exe-

WO 2016/161809 PCT/CN2015/095794

cution. Grouped aggregates are by nature materialized. That is to say all the input data for
the grouping have to be materialized and only then the results can be produced. This ma-

terialized nature of the grouped aggregates makes parallelization of grouped aggregates
difficult.

[0008] An implementation for computing group aggregate functions is known from US
5,850,547. There, it is suggested that data from a table is partitioned into multiple subsets
of data and each of the multiple subsets of data is allocated to one of a plurality of processes.
Intermediate aggregations are performed in parallel by the plurality of processes on each of
the multiple subsets of data. Each intermediate aggregation yields at least one intermediate
value, wherein the at least one intermediate value is represented in an internal type format.
The intermediate values from each of the intermediate aggregations are merged into a final
aggregation value.

SUMMARY OF THE INVENTION

[0009] The inventors realized that with the prior art solutions for computing group aggregate
functions, the efficiency is not optimal.

[0010] In view of the above, one object of the present invention is to provide a method, an
apparatus, a computer-readable storage medium and a data structure for computing group
aggregate functions in a more efficient way. The foregoing and/or other objects are
achieved by the features of the independent claims. Further implementation forms are
apparent from the dependent claims, the description and the Figures.

[0011] A first aspect of the invention provides a computer-implemented method for parallel
processing a group aggregate function on a set of data, comprising the steps of:

- clustering the set of data based on a grouping property of the group aggregate function

to obtain a plurality of clusters,
- allocating the plurality of clusters to a plurality of processing threads, and
- processing in parallel the group aggregate function in the plurality of processing

threads.

[0012] Clustering the set of data based on a grouping property of the group aggregate function
can be performed such that one or more elements of the set of data which according to the
grouping property belong to the same group are assigned to the same cluster of the plurality
of clusters. In other words, the clustering can ensure that elements of the set of data which
belong to the same group are assigned to the same cluster. In this case, a cluster may
comprise elements from the set of data that belong to different groups, but elements of one
group are not shared between different clusters.

[0013] This has the advantage that when the group aggregate function is computed for a certain
cluster, the result for this cluster already comprises the final result for the groups that were
assigned to this cluster. Therefore, when computing one cluster is finished, results for the
groups in this cluster are already available and can be forwarded for further processing,
without having to wait for the processing of the other clusters to finish.

2

WO 2016/161809 PCT/CN2015/095794

[0014] Preferably, the clustering is performed such that each cluster is assigned approximately
equal numbers of elements of the set of data.

[0015] Modern processors are often equipped with SIMD (single-instruction, multiple-data)
hardware which allows performing so-called vectorized processing, that is, executing the
same operation on a series of closely adjacent data. Prior art parallel grouped aggregates
use SIMD in limited ways to compute the aggregates. In embodiments of the present in-
vention, SIMD can be used in more phases of the parallel grouped aggregates.

[0016] Columnar stores store each column separately. A notional row is bound by row-ids
shared by the column stores. Some of the prior art repartition techniques involve copying
of the columns on which grouping is done and also the columns which need to be aggre-
gated. This model does not leverage the storage layout of columnar databases.

[0017] According to a first implementation of the method according to the first aspect, clus-
tering the set of data comprises a step of radix clustering the set of data, in particular radix
clustering using the least significant bits of a grouping property of the set of data.

[0018] To perform the clustering using a radix clustering algorithm has the advantage that the
clustering can be performed very efficiently, while still ensuring that elements of the set of
data that belong to the same group (as determined by the grouping property) are assigned to
the same cluster.

[0019] According to a second implementation of the method according to the first aspect, each
of the plurality of processing threads is assigned to at least one core of a processor with a
plurality of cores. This has the advantage that the computation can be performed efficiently
on a multicore processor.

[0020] According to a third implementation of the method according to the first aspect, the
method further comprises an initial step of filtering input data and obtaining the set of data
as a result of the filtering. Thus, the method can be efficiently performed on a larger set of
data by first obtaining the relevant subset of data through filtering. Preferably, the filtering
step is performed before the clustering step.

[0021] According to a fourth implementation of the method according to the first aspect, the
filtering is performed by partitioning the input data and filtering each partition by a sepa-
rate worker thread. Thus, the method can be performed on very large sets of data. In par-
ticular, the same worker thread can perform the filtering and the radix clustering.

[0022] According to a fifth implementation of the method of the first aspect, the set of data is
organized in columns. This allows for efficient processing on structured data.

[0023] According to a sixth implementation of the method of the first aspect, clustering the set
of data comprises the steps:

WO 2016/161809 PCT/CN2015/095794

- clustering a grouping column that corresponds to the grouping property of the group
aggregate function to obtain clusters of the grouping column, and

- expanding the clusters of the grouping column with aggregate columns.

[0024] Thus, clustering is performed using only the data relevant for the clustering algorithm.
After the clustered grouping column is obtained, the clustered grouping column is ex-
panded with the aggregate columns to obtain the complete cluster.

[0025] According to a seventh implementation of the method of the first aspect, the method
according to the first aspect of the invention further comprises a step of gathering infor-
mation about the data of a single cluster. Such data may be necessary for plurality of
processing threads to efficiently process the group aggregate function on the plurality of
clusters.

[0026] According to an eighth implementation of the method of the first aspect, the aggregate
function of the group aggregate function is one of summing, averaging, minimum,
maximum, or counting. These aggregate functions can be particularly efficiently com-
puted.

[0027] According to a ninth implementation of the method of the first aspect, more than one of
the plurality of clusters is assigned to a processing thread. For example, if there are more
clusters than available processing cores, it can be beneficial that more than one cluster is
computed on a given processing core. In this way, embodiments of the invention can im-
plement a combination of parallel and sequential processing of the aggregate function on
the plurality of clusters.

[0028] According to a tenth implementation of the method of the first aspect, the plurality of
processing threads performs group aggregation by hashing, sorting and/or going through a
nested loop. Thus, group aggregation can be performed on each of the clusters in the same
way as it would be performed by a single thread on the original set of data — with a speedup
that ideally corresponds to the number of processing threads (or the number of clusters, if
one processing thread is assigned to each cluster).

[0029] A second aspect of the invention provides an apparatus that is configured to perform the
method of the first aspect of the invention. In particular, there is provided an apparatus that
is configured to perform the method according to one of the implementations of the first
aspect of the invention.

[0030] According to a first implementation of the second aspect of the invention, the apparatus
comprises a processor with a plurality of cores, wherein one or more of the processing
threads are affined to one of the plurality of cores. A multi-core processor provides effi-
cient ways of processing in parallel the plurality of clusters in the plurality of processing
threads.

[0031] According to a second implementation of the second aspect of the invention, the ap-
paratus is a computing device with a non-uniform memory access architecture, wherein the

4

WO 2016/161809 PCT/CN2015/095794

computing device is adapted to assign a local cluster to a processing thread if a predeter-
mined percentage of data of the local cluster is present in a local memory of a core to which
the processing thread is assigned. Thus, the clusters are not randomly assigned to proc-
essing threads, but each of the clusters is assigned to a processing thread (and corre-
sponding core) that is most suited to process this cluster.

[0032] A third aspect of the invention provides a computer-readable storage medium storing
program code, the program code comprising instructions for carrying out the method of the
first aspect of the invention, in particular the method of one the implementations of the first
aspect of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] To illustrate the technical features of embodiments of the present invention more clearly,
the accompanying drawings provided for describing the embodiments are introduced
briefly in the following. The accompanying drawings in the following description are
merely some embodiments of the present invention, but modifications on these embodi-
ments are possible without departing from the scope of the present invention as defined in
the claims.

[0034] FIG. 1 shows a flow chart of a method for parallel processing a group aggregate func-
tion according to embodiments of the invention,

[0035] FIG. 2 shows an input table and a materialized results table that is obtained by
filtering the input table in accordance with the present invention,

[0036] FIG. 3 shows a schematic illustration of radix clustering to obtain a plurality of clusters
in accordance with the present invention,

[0037] FIG. 4 shows a schematic illustration of a step of projecting on aggregation columns in
accordance with the present invention,

[0038] FIG. 5 shows a schematic illustration of an example of metadata of a cluster in accor-
dance with the present invention,

[0039] FIG. 6 shows a schematic illustration of a grouped aggregate for one cluster in accor-
dance with the present invention, and

[0040] FIG. 7 shows a flow chart of a method for parallel processing a group aggregate func-
tion according to further embodiments of the invention.

DETAILED DESCRIPTION OF THE EMBODIMENTS

WO 2016/161809 PCT/CN2015/095794

[0041] With reference to FIG. 1, an exemplary realization of the inventive method is presented.
In this embodiment, the method comprises 6 steps, as illustrated in the following.

[0042] FIG. 1 depicts an input table 200, (i.e., ‘dimension_tab’). The input table comprises a
plurality of columns: a Row_ID column 201, a PDT_ID column 202, a PDT_Type column
203, a Sales_value column 204, and a Sales_piece column 205.

[0043] The method shall be illustrated with the following example of an SQL statement for
computing the group aggregate function “SUM” on the input table ‘dimension_tab’ 200:

[0044] SELECT SUM(sales_value), SUM(sales_piece) FROM dimension_tab GROUP BY
pdt_id WHERE pdt_type = ‘car’;

[0045] In a first step S10, the input table is (horizontally) partitioned; there is a worker thread
per partition. In each worker thread, a filter that results from the query selection predicate
(the WHERE clause) is applied. In the present example, the filter is “pdt_type = car”.
Filtering can be performed in two sub-steps (not shown in FIG.1):

1. Apply the filter condition on each filter column independently. This step uses

sequential access of memory and can use SIMD for applying the filter.
2. After applying the filter to the columns, project the grouping and aggregation

columns. The projected columns are materialized to perform grouping.

[0046] FIG. 2 illustrates an example of an input table 200 that is filtered according to step S10
shown in FIG. 1. The filtering step yields a materialized results table 210, comprising only
those entries from the input table 200, where PDT_Type is set to ‘car’, that is, the first,
third, fourth, fifth, seventh, and ninth rows of the table 200. Thus, the materialized results
table comprises a Row_ID column 211, a PDT_ID column 212, a Sales_value column 214,
and a Sales_piece column 215.

[0047] In a second step S12, radix clustering is applied based on a grouping column of the
materialized results table 210. Step S12 can be performed with the following sub-steps (not
shown in FIG. 1):

1. Apply radix clustering methods to cluster the output of step S10. For example, two

least significant bits can be used, resulting in four clusters. Each cluster carries the
GROUP BY columns values and the corresponding row_IDs.

2. Single instruction, multiple data (SIMD)-processing is used to generate the clus-
ters: scan the input column sequentially, mask the radix bits to obtain the cluster

number, and write each cluster sequentially.

[0048] FIG. 3 illustrates the radix clustering based on the grouping column PDT_ID. A local
partition 300 comprises the grouping column PDT_ID in decimal representation 301, with
elements 302. The elements 302 are shown in FIG. 3 on the left in decimal representation.
Equivalently, they can be shown in binary representation 302’, indicated in FIG. 3 as el-

WO 2016/161809 PCT/CN2015/095794

ements of the grouping column 301’ of the local cluster 300’ in binary representation.
Radix clustering is performed on the N least significant bits 301a’ of the elements of the
grouping column 301° (the “radix bits™). This results in 2" clusters.

[0049] Preferably, the clustering is performed such that each cluster is assigned approximately
equal numbers of elements of the set of data.

[0050] In the example shown in FIG. 3, clustering is performed on the two least significant bits,
which results in a number of 4 clusters. FIG. 3 shows the cluster IDs 00, 01, 10, 11 next to
the cluster elements 312, 314, 316, 318 assigned to these clusters. The first cluster corre-
sponds to the least significant bits ‘00’ and comprises one element 312 (with PDT _ID 4).
The second cluster corresponds to the least significant bits ‘01’ and comprises three ele-
ments 314 (with PDT_ID 1, 1, and 9). The third cluster corresponds to the least significant
bits ‘10” and comprises no elements (indicated as NULL element 316). The fourth cluster
corresponds to the least significant bits ‘11’ and comprises two elements 318 (with
PDT _ID 11, 11).

[0051] Furthermore, in step S12 each processing thread continues by expanding local clusters
with aggregate columns, in a one-by-one-way. Then, the aggregation columns are pro-
jected in local clusters. Since each thread operates on data existing in its local memory,
access to remote memory is avoided, i.e., the projection operation is NUMA-friendly.

[0052] The diagram in FIG. 4 illustrates the expansion with aggregate columns and the pro-
jection operations that are performed by one thread. The diagram illustrates the plurality of
clusters from FIG. 3, wherein clusters to which no elements have been assigned during the
previous method step, are not considered. The plurality of clusters 400 comprises clusters
with cluster IDs 411, 413, 415, corresponding to the least significant bits 00, 01, and 11.
There 1s no cluster corresponding to the least significant bits 10, because no elements were
assigned to this cluster. Before projecting the aggregation columns, each cluster comprises
a set of entries 412, 414, 418 with columns Row_ID and PDT_ID. After projecting on the
aggregation columns Sales_value and Sales_piece, each cluster 422, 424, 428 also com-
prises columns Sales_value and Sales_piece.

[0053] In the embodiment shown in FIG. 1, the filtering step S10 and the clustering step S12
are performed by the same threads 10, 11. In other embodiments, separate threads can
perform the filtering on the one hand, and the clustering on the other hand.

[0054] In step S14 of the method illustrated in FIG. 1, the clusters are assigned to different
threads. Based on the nature of the data distribution, each core can be assigned one or more
total clusters to be processed. A core (or a thread affined to a core) can be assigned a cluster
if a larger percentage of the cluster’s data is present in its local memory. This will reduce
remote memory access.

[0055] In step S16 of the method illustrated in FIG. 1, information is gathered about the data of
a single total cluster. A single total cluster is spread across discontinuous memory. This is
because each thread individually performed the clustering. A thread which will perform the
grouping on a single cluster will need to gather all these cluster data. The gathering is done
by the thread obtaining the starting address and the number of items in that address.

WO 2016/161809 PCT/CN2015/095794

[0056] Preferably, the table data is not copied. Even if a piece of a total cluster is present in the
remote node, the access is going to be sequential.

[0057] The data in the local clusters will be stored by different threads at different memory
locations. The global cluster is formed by consolidating these memory addresses into one
data structure.

[0058] FIG. 5 illustrates the metadata 500 for one global cluster (the global cluster corre-
sponding to the least significant bits ‘00”). Besides the cluster number 510, the cluster
metadata 500 comprise, for each of a plurality of local clusters, the starting address 512 and
the number of items 514 found at that starting address. In this way, the local clusters can be
consolidated into a global cluster.

[0059] In step S18, group aggregation is performed on one cluster. The grouping can be done
by any method, e.g. hashing, sorting or nested loop. The group aggregation can be done in
parallel, independently for each total cluster. Preferably, the aggregation is performed by
looking up the aggregation column values present in the clustered data.

[0060] FIG. 6 shows a schematic illustration of the grouped aggregate for one cluster (the
cluster corresponding to least significant bits ‘01”). The first column 602 of the grouped
aggregate is the grouping column PDT_ID. The second column 604 shows the sum of the
aggregate column sales_value corresponding to the IDs in the first column 602.The third
column 606 comprises the sums of the aggregate column sales_piece corresponding to the
IDs in the first column 602.

[0061] In step S20 of the method illustrated in FIG. 1, the result set is projected. Once the
grouping is done by a thread, it can project out the result values. If further clusters exist, or
a higher operator demands more rows, the threads will go to steps S16 and S18.

[0062] As indicated in FIG. 1, the same threads 20, 21 perform the steps of gathering cluster
data S16, group aggregating one cluster S18 and projecting the group result S20. In other
embodiments of the invention, these steps S16, S18 and S20 are performed by different
threads.

[0063] In step S22, it is determined whether there are further clusters that have not been pro-
cessed yet. If so, the method proceeds with step S16 and gathers cluster data for the cluster
that has not been processed yet. Once all clusters have been processed, the method ends
with step S24.

[0064] FIG. 7 shows a flow chart of a further embodiment of the present invention. This em-
bodiment relates to a further method of grouping aggregates in a database management
system involving parallel query processing over partitioned data. An example query can be
expressed with an SQL statement of the form “SELECT A, ... FROM table WHERE ...
GROUP BY A”. The embodiment applies to the execution of the GROUP BY clause. The
query processor produces, in parallel worker threads, unsorted results written to local
memory (a partition) of each thread.

WO 2016/161809 PCT/CN2015/095794

[0065] In step S710, for each partition, the results of a filter are calculated. In step S720, each
(filtered) partition is radix clustered locally by a dedicated thread. In step S730, clusters are
allocated to the threads in such a way that (a) the data value ranges are calculated to contain
approximately equal amounts of data, (b) the data value range partitions are allocated to
memory that is local to worker threads. In step S740, each thread gathers all the data related
to the cluster allocated to itself to a local memory of the thread. In step S750, each cluster is
group aggregated locally. In step S760, the result set parts are projected directly from the
thread which operated on the cluster.

[0066] Other embodiments of the invention are possible. For example, in a database man-
agement system, steps S720, S730 and S740 can be applied in the in the execution of other
SQL statement clauses like GROUP BY on JOIN.

[0067] To summarize, the methods illustrated in FIGs. 1 and 7 takes advantage of pipelining of
group aggregation by reduced materialization along with taking benefit of hardware par-
allelization benefits (like SIMD). Most part of the method is executed in parallel threads
on horizontal table partitions which results in a high level of parallelism and vectorized
processing (SIMD). Radix clustering using SIMD can be used for clustering, which is
much faster than complete repartitioning. Clustered groups are created before grouping is
started. This improves the response time of the algorithm; the first result set can be pushed
out early. Clustered groups creation removes the expensive serial phase of the parallel
group-by algorithm. Finally, radix clustering of a pseudo row-id column can avoid un-
necessary row materializations and column projections.

[0068] The foregoing descriptions are only implementation manners of the present invention;
the protection of the scope of the present invention is not limited to this. Any variations or
replacements can be easily made through person skilled in the art. Therefore, the protection
scope of the present invention should be subject to the protection scope of the attached
claims.

WO 2016/161809 PCT/CN2015/095794

CLAIMS

A computer-implemented method for parallel processing a group aggregate function on

a set of data, comprising the steps of:

- clustering the set of data based on a grouping property of the group aggregate
function to obtain a plurality of clusters,

- allocating the plurality of clusters to a plurality of processing threads, and

- processing in parallel the group aggregate function in the plurality of processing

threads.

The method of claim 1, wherein clustering the set of data comprises a step of radix
clustering the set of data, in particular radix clustering using the least significant bits of a

grouping property of the set of data.

The method of one of the previous claims, wherein each of the plurality of processing

threads is assigned to at least one core of a processor with a plurality of cores.

The method of one of the previous claims, further comprising an initial step of filtering

input data and obtaining the set of data as a result of the filtering.

The method of claim 4, wherein the filtering is performed by partitioning the input data

and filtering each partition by a separate worker thread.

The method of one of the previous claims, wherein the set of data is organized in

columns.

The method of one of the previous claims, wherein clustering the set of data comprises

the steps:

- clustering a grouping column that corresponds to the grouping property of the
group aggregate function to obtain clusters of the grouping column, and

- expanding the clusters of the grouping column with aggregate columns.

The method of one of the previous claims, further comprising a step of gathering in-

formation about the data of a single cluster.

10

10.

11.

12.

13.

14.

15.

WO 2016/161809 PCT/CN2015/095794

The method of one of the previous claims, wherein the aggregate function of the group

aggregate function is one of summing, averaging, minimum, maximum, or counting.

The method of one of the previous claims, wherein more than one of the plurality of

clusters is assigned to a thread.

The method of one of the previous claims, wherein the plurality of processing threads

perform group aggregation by hashing, sorting and/or going through a nested loop.

An apparatus which is configured to perform the method of one of the previous claims.

The apparatus of claim 12, wherein the apparatus comprises a processor with a plurality
of cores, wherein one or more of the processing threads are assigned to one of the plu-

rality of cores.

The apparatus of claim 13, wherein the apparatus is a computing device with a
non-uniform memory access architecture, wherein the computing device is adapted to
assign a local cluster to a processing thread if a predetermined percentage of data of the
local cluster is present in a local memory of a core to which the processing thread is

assigned.

A computer-readable storage medium storing program code, the program code com-

prising instructions for carrying out the method of one of claims 1 to 11.

11

WO 2016/161809 PCT/CN2015/095794
1/6
1041
1 /
Apply filter on filter columns
1T & materialize
S10— 1
Radix cluster based on one
1 | rouping column
S12— L B G
Allocate clusters to different
/ threads 20
d“k /
L1 Gather data for one cluster (
S16 —'/ D
1 Group aggregate the cluster
s18—
G Yes
1 Project group Result More — Finish
$20 /
S22 S24

FIG. 1

WO 2016/161809 PCT/CN2015/095794
2/6
201 202 203 204 205
1 1 Car 150 17 200
2 2 Bike 150 62 _///’
3 1 Car 400 56
4 11 Car 350 44
5 9 Car 300 31
6 6 Bike 3 2
7 4 Car 10 1
8 8 Bike 50 19
9 19 Bike 60 26
10 10 Bike 30 18
11 11 Car 30 3
12 10 Bike 25 9
Row_ PDT_ PDT _ Sales Sales
ID ID Type value piece
211 212 214 215
’/ ,/ ’/ '/
1 1 150 17 210
3 1 400 56 ////’
4 11 350 44
5 9 300 31
7 4 10 1
11 11 30 3
Row_ PDT_ Sales_ Sales_
ID ID value piece

FIG. 2

PCT/CN2015/095794

€ 'Old

3/6

i

THIN

WO 2016/161809

\\ =,
ad 4
) 4

PCT/CN2015/095794
4/6

WO 2016/161809

¥ "9id

i i
i
. 1 !
Caoapl anjes ol al i m al al i
I $2)8% T991RS Tiad Moy ! iy o Ti0d Treoy -
= - ‘ - wo e I | o |-
I 2 (1 4 A 1 i L A § 2
! ¥y T b ! i T ! .
1
1 | [1
I I ' i
1 1] 1
I m— I H i
N woand 1 i 1
] Tsereg | pLy I
! 1 i |
| © ! S
I I A‘_ i] 1
1 1 | 1 []
| | . “
“ anarl enjea 1 £l H n :
A, saleg TERIRE Tyn “mo H“ Ly ZAY B
.. e L b Wy
m 1 &1 _ % i m “ E53 “
“ i I w10y
s o .
f £
azy 428374

WO 2016/161809 PCT/CN2015/095794
5/6

510 512 514

J Z

[[4
00 0x1234abcd 18

0x56789ef0 8

0x1134dcba 2

0x22446f56 30

FIG. 5

602 604 606

/ J /

/ [[
1 550 73
9 300 31
PDT_ SUM(sales_ SUM(sales T
ID value) piece 600

FIG. 6

PCT/CN2015/095794

6/6

WO 2016/161809

S710
S720
S730
S740
S750
S760

i

.

[w i
Z
7

Ty

R &

FIG. 7

INTERNATIONAL SEARCH REPORT

International application No.
PCT/CN2015/095794

A. CLASSIFICATION OF SUBJECT MATTER

GO6F 9/40(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT, CNKI, WPI, EPODOC, IEEE, GOOGLE: parallel, aggregate, function, set, cluster, allocat+, thread, filter, group,

process+, hash, conjunction, database, column

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5850547 A (ORACLE CORPORATION) 15 December 1998 (1998-12-15) 1-15
description, column 2, lines 25 to 40
A US 8712993 B1 (TERADATA US, INC.) 29 April 2014 (2014-04-29) 1-15
the whole document
A US 2004122815 A1 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 24 June| 1-15
2004 (2004-06-24)
the whole document
A CN 101944116 A (CHANGZHOU YIRAN TECHNOLOGY CO., LTD.) 12 January 2011 1-15
(2011-01-12)
the whole document

I:' Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

. document defining the general state of the art which is not considered

A7 1o be of particular relevance

“g” earlier application or patent but published on or after the international
filing date

“ document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“«or document referring to an oral disclosure, use, exhibition or other
means

«pe document published prior to the international filing date but later than

the priority date claimed

wp later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be

X ;] p . ;
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

wy» document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“«&” document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

28 January 2016 24 February 2016
Name and mailing address of the ISA/CN Authorized officer
STATE INTELLECTUAL PROPERTY OFFICE OF THE
P.R.CHINA TIAN, Minli

6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing
100088, China

Facsimile No. (86-10)62019451

Telephone No. (86-10)62414425

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members

PCT/CN2015/095794
. Patf:nt document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
Us 5850547 A 15 December 1998 None
US 8712993 Bl 20 April 2014 None
US 2004122815 Al 24June2004 US 2007192285 Al 16 August 2007
CON 10104116 A DJanuary2011 None S

Form PCT/ISA/210 (patent family annex) (July 2009)

	Bibliography
	Abstract
	Description
	Claims
	Drawings
	Search-report

